摘要
给出了一类Boole方程F=G的解集S关于逻辑加、逻辑乘、逻辑非运算可构成Boole代数系统的结论,又给出了Boole代数系统(S,+,·,-)与Boole代数系统(B,+,·,-)同态,进而得到了(S,+,·,-)与(B,+,·,-)同构的性质,并给予逻辑证明,也举例说明了两个代数系统同态、同构应具备的条件,从而更加完善了Boole代数系统理论.
This paper gives the solution S of the same class Boole equation F=G,It is about the conclusion of Boole algebra system be composed of the arthmetic of add logic and multiply logic and not logic,and to gets the Boole algebra system(S,+,·,-)and the homomorphism of the Boole algebra system(B,+,·,-),then to gets the isomorphic properties of(S,+,·,-)and(B,+,·,-),and gives the logical proof,also to illustrates the condition of two algebraic system homomorphism,and isomorphism,and thus to have perfected the theory of Boole algebra system.
作者
丁殿坤
吕端良
DING Dian-kun;LV Duan-liang(Basic Courses Department,Shandong University of Science and Technology,Taian Shandong 271019,China)
出处
《大学数学》
2019年第2期20-22,共3页
College Mathematics
基金
山东省教育厅立项课题资助项目(J06P14)
关键词
解集
Boole代数系统
同态
同构
逻辑证明
solution
system of Boole algebra
homomorphism
isomorphism
logical proof