摘要
In this paper, two numerical methods are proposed for solving distributed-order fractional Bagley-Torvik equation.This equation is used in modeling the motion of a rigid plate immersed in a Newtonian fluid with respect to the nonnegative density function. Using the composite Boole's rule the distributedorder Bagley-Torvik equation is approximated by a multi-term time-fractional equation, which is then solved by the GrunwaldLetnikov method(GLM) and the fractional differential transform method(FDTM). Finally, we compared our results with the exact results of some cases and show the excellent agreement between the approximate result and the exact solution.
In this paper, two numerical methods are proposed for solving distributed-order fractional Bagley-Torvik equation.This equation is used in modeling the motion of a rigid plate immersed in a Newtonian fluid with respect to the nonnegative density function. Using the composite Boole's rule the distributedorder Bagley-Torvik equation is approximated by a multi-term time-fractional equation, which is then solved by the GrunwaldLetnikov method(GLM) and the fractional differential transform method(FDTM). Finally, we compared our results with the exact results of some cases and show the excellent agreement between the approximate result and the exact solution.