期刊文献+

Review on simulation of land-surface processes on the Tibetan Plateau 被引量:2

Review on simulation of land-surface processes on the Tibetan Plateau
下载PDF
导出
摘要 The Tibetan Plateau(TP) has powerful dynamics and thermal effects, which makes the interaction between its land and atmosphere significantly affect climate and environment in the regional or global area. By retrospecting the latest research progress in the simulation of land-surface processes(LSPs) over the past 20 years, this study discusses both the simulation ability of land-surface models(LSMs) and the modification of parameterization schemes from two perspectives, the models' applicability and improved parameterization schemes. Our review suggests that different LSMs can well capture the spatiotemporal variations of the physical quantities of LSPs; but none of them can be fully applied to the plateau, meaning that all need to be revised according to the characteristics specific to the TP. Avoiding the unstable iterative computation and determining the freeze-thaw critical temperature according to the thermodynamic equilibrium equation, the unreasonable freeze-thaw parameterization scheme can be improved. Due to the complex underlying surface of the TP, no parameterization scheme of roughness length can well simulate the various characteristics of the turbulent flux over the TP at different temporal scales. The uniform soil thermodynamic and hydraulic parameterization scheme is unreasonable when it is applied to the plateau, as a result of the strong soil heterogeneity. There is little research on the snow-cover process so far,and the improved scheme has no advantage over the original one due to the lack of some related physical processes. The constant interaction among subprocesses of LSPs makes the improvement of a multiparameterization scheme yield better simulation results. According to the review of existing research, adding high-quality observation stations, developing a parameterization scheme suitable for the special LSPs of the TP, and adjusting the model structures can be helpful to the simulation of LSPs on the TP. The Tibetan Plateau(TP) has powerful dynamics and thermal effects, which makes the interaction between its land and atmosphere significantly affect climate and environment in the regional or global area. By retrospecting the latest research progress in the simulation of land-surface processes(LSPs) over the past 20 years, this study discusses both the simulation ability of land-surface models(LSMs) and the modification of parameterization schemes from two perspectives, the models' applicability and improved parameterization schemes. Our review suggests that different LSMs can well capture the spatiotemporal variations of the physical quantities of LSPs; but none of them can be fully applied to the plateau, meaning that all need to be revised according to the characteristics specific to the TP. Avoiding the unstable iterative computation and determining the freeze-thaw critical temperature according to the thermodynamic equilibrium equation, the unreasonable freeze-thaw parameterization scheme can be improved. Due to the complex underlying surface of the TP, no parameterization scheme of roughness length can well simulate the various characteristics of the turbulent flux over the TP at different temporal scales. The uniform soil thermodynamic and hydraulic parameterization scheme is unreasonable when it is applied to the plateau, as a result of the strong soil heterogeneity. There is little research on the snow-cover process so far,and the improved scheme has no advantage over the original one due to the lack of some related physical processes. The constant interaction among subprocesses of LSPs makes the improvement of a multiparameterization scheme yield better simulation results. According to the review of existing research, adding high-quality observation stations, developing a parameterization scheme suitable for the special LSPs of the TP, and adjusting the model structures can be helpful to the simulation of LSPs on the TP.
出处 《Research in Cold and Arid Regions》 CSCD 2019年第2期93-115,共23页 寒旱区科学(英文版)
基金 funded by the National Natural Science Foundation of China (41571066, 41601077, and 41771068) the Strategic Priority Research Pro gram of the Chinese Academy of Sciences (CAS) (XDA20100102, XDA19070204) the CAS "Light of West China" Program the Youth Innovation Promo tion Association CAS (2018460) the Program of China Scholarship Council (201804910129)
关键词 TIBETAN PLATEAU LAND - ATMOSPHERE interaction LAND-SURFACE models model APPLICABILITY parameterized modification Tibetan Plateau land-atmosphere interaction land-surface models model applicability parameterized modification
  • 相关文献

同被引文献35

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部