期刊文献+

Holocene climatic change reconstructed from trace elements of an aeolian deposit in the southeastern Mu Us Desert, northern China

Holocene climatic change reconstructed from trace elements of an aeolian deposit in the southeastern Mu Us Desert, northern China
下载PDF
导出
摘要 In semi-arid and arid desert regions of northern China, aeolian deposits document the framework variation of an Asian monsoon during the late Quaternary. However, there is still a lack of detailed data pertaining to Holocene Asian monsoonal variation especial in the modern Asian summer monsoonal boundary belt. In this study, we reconstructed Holocene millennial-scale climatic changes in the Mu Us Desert, northern China, through systematic analysis of the variation of trace elements(324 samples) in different lithological units of the palaeosol-aeolian sand deposit, in combination with14 C and OSL chronology. Statistical results, correlation and clustering analysis indicate that the high content of 11 trace elements(V, Y, Cr, Nb, P, Mn, Cu, Zr, As, Ni and Rb, represented by P) and lower Sr content corresponding to periods of palaeosol development, marked increase of vegetation, weathering degree, and enhanced Asian summer monsoonal strength. In contrast, their opposed variation are coincident with accumulated aeolian sand layers, implying weaker summer monsoons and less geochemical weathering and degraded vegetation. These associations can be considered as signaling regional humid and dry changes of the Holocene environment. Accordingly, relatively arid conditions dominated the region before 7.2 ka, and there was an optimal humid climate in 7.2-4.6 ka. Afterwards, the climate became obviously dry, accompanied with several cycles of relatively wet and dry, such as relatively wet intervals around 4.1-3.7 ka, 3.5-3.3 ka and 2.5 ka. In addition, six millennial-scale dry events were recorded, and these events were consistent with weaker Asian summer monsoonal intervals in low latitudes, declined palaeosol development and precipitation in middle latitudes, as well as increased winter monsoon and periodic ice-rafting events in high latitudes of the Northern Hemisphere, within limits of accuracy of existing dating ages. This possibly suggests a noteworthy synchronism between millennial-scale climatic changes in this region and on a global scale. In semi-arid and arid desert regions of northern China, aeolian deposits document the framework variation of an Asian monsoon during the late Quaternary. However, there is still a lack of detailed data pertaining to Holocene Asian monsoonal variation especial in the modern Asian summer monsoonal boundary belt. In this study, we reconstructed Holocene millennial-scale climatic changes in the Mu Us Desert, northern China, through systematic analysis of the variation of trace elements(324 samples) in different lithological units of the palaeosol-aeolian sand deposit, in combination with14 C and OSL chronology. Statistical results, correlation and clustering analysis indicate that the high content of 11 trace elements(V, Y, Cr, Nb, P, Mn, Cu, Zr, As, Ni and Rb, represented by P) and lower Sr content corresponding to periods of palaeosol development, marked increase of vegetation, weathering degree, and enhanced Asian summer monsoonal strength. In contrast, their opposed variation are coincident with accumulated aeolian sand layers, implying weaker summer monsoons and less geochemical weathering and degraded vegetation. These associations can be considered as signaling regional humid and dry changes of the Holocene environment. Accordingly, relatively arid conditions dominated the region before 7.2 ka, and there was an optimal humid climate in 7.2-4.6 ka. Afterwards, the climate became obviously dry, accompanied with several cycles of relatively wet and dry, such as relatively wet intervals around 4.1-3.7 ka, 3.5-3.3 ka and 2.5 ka. In addition, six millennial-scale dry events were recorded, and these events were consistent with weaker Asian summer monsoonal intervals in low latitudes, declined palaeosol development and precipitation in middle latitudes, as well as increased winter monsoon and periodic ice-rafting events in high latitudes of the Northern Hemisphere, within limits of accuracy of existing dating ages. This possibly suggests a noteworthy synchronism between millennial-scale climatic changes in this region and on a global scale.
出处 《Research in Cold and Arid Regions》 CSCD 2019年第2期126-138,共13页 寒旱区科学(英文版)
基金 funded by the National Natural Science Foundation of China (Grant Nos. 41501220, 41671204) China Postdoctoral Science Foundation (Grant Nos. 2015M570861 2017T100783) Natural Science Foundation of Gansu Province, China (1506RJZA287) Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmen tal and Engineering Research Institute, CAS (KLDD2017-002)
关键词 HOLOCENE CLIMATIC change Mu Us DESERT Aeolian DEPOSIT trace element synchronism Holocene climatic change Mu Us Desert Aeolian deposit trace element synchronism
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部