期刊文献+

深度学习在基于单幅图像的物体三维重建中的应用 被引量:27

Application of Deep Learning to 3D Object Reconstruction From a Single Image
下载PDF
导出
摘要 基于单幅图像的物体三维重建是计算机视觉领域的一个重要问题,近几十年来得到了广泛的关注.随着深度学习的不断发展,近年来基于单幅图像的物体三维重建取得了显著进展.本文对深度学习在基于单幅图像的物体三维重建领域的研究进展及具体应用进行了综述.首先介绍了基于单幅图像的三维重建的研究背景及其传统方法的研究现状,其次简要介绍了深度学习并详细综述了深度学习在基于单幅图像的物体三维重建中的应用,随后简要概述了三维物体重建的常用公共数据集,最后进行了分析与总结,指出了目前存在的问题及未来的研究方向. 3D object reconstruction from a single image is an important topic in computer vision, which has attracted enormous attention during the past decades. With the further study in deep learning, remarkable progress of 3D object reconstruction from a single image has been obtained in recent years. In this paper, we review the applications of deep learning models in the field of 3D object reconstruction from a single image. First, we introduce the research background and the current state-of-the-art of traditional methods. Then, we provide a brief overview of typical deep learning models and we describe the applications of deep learning techniques in 3D object reconstruction from a single image. After that,we list several commonly used data sets for 3D object reconstruction. Finally, we discuss current challenges and further research directions.
作者 陈加 张玉麒 宋鹏 魏艳涛 王煜 CHEN Jia;ZHANG Yu-Qi;SONG Peng;WEI Yan-Tao;WANG Yu(School of Educational Information Technology, Central China Normal University, Wuhan 430079, China;Centre for Vision, Speech and Signal Processing, University of Surrey, Sur- rey GU27XH, UK;Computer Graphics and Geometry Lab- oratory,?Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland;Robotics Institute, the Hong Kong University of Science and Technology, Hong Kong 999077, China)
出处 《自动化学报》 EI CSCD 北大核心 2019年第4期657-668,共12页 Acta Automatica Sinica
基金 国家自然科学基金(61605054 61502195) 湖北省自然科学基金(2014CFB659) 华中师范大学中央高校基本科研业务费(CCNU19QD007 CCNU19TD007 CCNU16JYKX039 CCNU15A05023)资助~~
关键词 三维重建 深度学习 计算机视觉 单幅图像 3D reconstruction deep learning computer vision single image
  • 相关文献

参考文献4

二级参考文献52

  • 1王守觉,曹文明.半导体神经计算机的硬件实现及其在连续语音识别中的应用[J].电子学报,2006,34(2):267-271. 被引量:3
  • 2Sequeira V, Goncalves J G M, Ribeiro M I. 3D reconstruction of indoor environments. In: Proceedings of International Conference on Image Processing. Lausanne, Switzerland: IEEE, 1996. 405-408.
  • 3Wang R, Luebke D. Efficient reconstruction of indoor scenes with color. In: Proceedings of the 4th International Conference on 3D Digital Imaging and Modeling. Banff, Canada: IEEE, 2003. 402-409.
  • 4Debevec P E, Taylor C J, Malik J. Modeling and rendering architecture from photographs: a hybrid geometry-and-imaged-based approach. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New Orleans, USA: ACM, 1996. 11-20.
  • 5Gibson S, Howard T. Interactive reconstruction of virtual environments from photographs, with application to scene-of-crime analysis. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology. Seoul, Korea: ACM, 2000. 41-48.
  • 6Hu B, Brown C. Interactive indoor scene reconstruction from image mosaics using cuboid structure. In: Proceedings of the Workshop on Motion and Video Computing. Orlando, USA: IEEE, 2002. 208-213.
  • 7Tomasi C, Kanade T. Shape and motion from image streams under orthography: a factorization approach. International Journal of Computer Vision, 1992, 9(2): 137-154.
  • 8Polleyfeys M, Gool L V, Vergauwen M, Verbiest F, Cornelis K, Tops J. Visual modeling with a hand-held camera. International Journal of Computer Vision, 2004, 59(3): 207-232.
  • 9Polleyfeys M, Nister D, Frahm J M, Akbarzadeh A, Mordohai P, Clipp B. Detailed real-time urban 3D reconstruction from video. International Journal of Computer Vision, 2008, 78(2-3): 143--167.
  • 10Shi J, Tomasi C. Good features to track. In: Proceedings of Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 1994. 593-600.

共引文献402

同被引文献118

引证文献27

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部