摘要
本文对国际和国内社会科学大数据研究进行了文献计量分析,定量和定性分析了其研究规律和特点。以学术文献数据库为数据来源,通过文献的统计特征分析了文献增长规律、学科分布特点、高产出机构及其影响力强弱;通过引用和共引分析对研究前沿和知识基础的关系进行研究;最后归纳了研究现状的特点和规律。1.大数据是社会科学的研究热点,图书馆、情报和文献学(information science and libraryscience)是社会科学中大数据研究文献产岀最多的学科;2.国内外社会科学大数据研究的知识基础既包含高产学科自身,也广泛吸收了自然科学中计算机通信相关学科和多科学学科的研究成果;3.中国人民大学和哈佛大学在社会科学大数据研究成果数量和影响力方面居国内外首位;4.我国社会科学研究成果数量己经有明显增加,但国际影响力还不足。
[Purpose/Significance] This article provides a bibliometric study of the big data research literature in social science to explore its features and patterns both in domestic and international area, quantitatively and qualitatively.[Method/Process] This article collects the data from academic databases, then makes statistical analysis on significant characteristics to evaluate the regularity of document increase, distribution of subject categories, most prolific and impactful institutions, and then discusses the relations between research front and intellectual base via citation and co-citation analysis, finally concludes research features and patterns of big data丒[Rcsult/Conclusion](1) Different subject categories show the different level of research interest while big data research has been one of the most popular topics in social science. The most documents are from information science and library science.(2) Besides journals of high output subject categories, computer science, telecommunications and multidisciplinary journals are common intellectual bases of big data research in social science.(3) Renmin University of China in domestic and Harvard University in the world are top institutions according to the number of fruits and influence of their publications of big data research in social science.(4) For China, publication quantity in social science makes apparent growth while international academic influence is still limited.
作者
刘玮
马续补
秦春秀
陈颖
LIU WEI;MA XUBU;QIN XIUCHUN;CHEN YING(School of Economics and Management , Xidian University, Xi'an, Shaanxi, 710071)
基金
国家自然科学基金青年项目“基于公众网络参与的民生公共政策第三方动态评估机理与方法研究”的研究成果,项目编号71503195
关键词
大数据
社会科学
引文分析
知识图谱
文献计量
big data
social science
citation analysis
knowledge mapping
bibliometrics