期刊文献+

基于体素特征重组网络的三维物体识别

3D Object Recognition Based on Voxel Features Reorganization Network
下载PDF
导出
摘要 三维物体识别是计算机视觉领域近年来的研究热点,其在自动驾驶、医学影像处理等方面具有重要的应用前景。针对三维物体的体素表达形式,特征重组卷积神经网络VFRN使用了直接连接同一单元中不相邻的卷积层的短连接结构。网络通过独特的特征重组方式,复用并融合多维特征,提高特征表达能力,以充分提取物体结构特征。同时,网络的短连接结构有利于梯度信息的传播,加之小卷积核和全局均值池化的使用,进一步提高了网络的泛化能力,降低了网络模型的参数量和训练难度。ModelNet数据集上的实验表明,VFRN克服了体素数据分辨率低和纹理缺失的问题,使用较少的参数取得了优于现有方法的识别准确率。 3D object recognition is a research focus in the field of computer vision and has significant application prospect in automatic driving,medical image processing,etc.Aiming at voxel expression form of 3D object,VFRN(voxel features reorganization network),using short connection structure,directly connects non-adjacent convolutional layers in the same unit.Through unique feature recombination,the network reuses and integrates multi-dimensional features to improve the feature expression ability to fully extract the structural features of objects.At the same time,the short connection structure of the network is conducive to the spread of gradient information.Additionally,employing small convolution kernel and global average pooling not only enhances generalization capacity of network,but also reduces the parameters in network models and the training difficulty.The experiment on ModelNet data set indicates that VFRN overcomes problems including low resolution ratio in voxel data and texture deletion,and achieves better recognition accuracy rate using less parameter.
作者 路强 张春元 陈超 余烨 YUAN Xiao-hui LU Qiang;ZHANG Chun-yuan;CHEN Chao;YU Ye(VCC Division,School of Computer and Information,Hefei University of Technology,Hefei Anhui 230601,China;Anhui Province Key Laboratory of Industry Safety and Emergency Technology (Hefei University of Technology),Hefei Anhui 230009,China;Department of Computer Science and Engineering,University of North Texas,Denton TX 76201,United States)
出处 《图学学报》 CSCD 北大核心 2019年第2期240-247,共8页 Journal of Graphics
基金 安徽省自然科学基金项目(1708085MF158) 国家自然科学基金项目(61602146) 国家留学基金项目(201706695044) 合肥工业大学智能制造技术研究院科技成果转化及产业化重点项目(IMICZ2017010)
关键词 物体识别 体素 卷积神经网络 特征重组 短连接 object recognition voxel convolution neural network feature reorganization short connection
  • 相关文献

参考文献7

二级参考文献76

  • 1王金虎,李传荣,周梅.全波形激光雷达数据在点云分类中的应用研究[J].遥感信息,2013,28(5):21-27. 被引量:6
  • 2戴宁,廖文和,陈春美.STL数据快速拓扑重建关键算法[J].计算机辅助设计与图形学学报,2005,17(11):2447-2452. 被引量:37
  • 3Kaufman A, Cohen D, Yagel R. Volume graphics[J]. IEEE Computer, 1993, 26(7): 51~64
  • 4Barillot C. Surface and volume rendering techniques to display 3-D data[J]. IEEE Engineering in Medicine and Biology, 1993, 12(1): 111~119
  • 5Chuang Jung-Hong, Hwang Weun-Jier. A new space subdivision for ray tracing CSG solids[J]. IEEE Computer & Graphics, 1995, 15(6): 56~62
  • 6Chandru Vijay, et al. Voxel-based modeling for layered manufacturing[J]. IEEE Computer Graphics & Applications, 1995, 15(6): 42~47
  • 7Kaufman A, Bakalash Reuven. Memory and processing architecture for 3D voxel-based imagery[J]. IEEE Computer Graphics & Applications, 1998,18(6): 10~23
  • 8Huang Jian, Yagel Roni, Fillipov V, et al. An accurate method to voxelize polygonal meshes[A]. In: Proceedings of IEEE Volume Visualization'98, Chapel Hill, North Carolina, 1998. 119~126
  • 9Oomes Stijn, Snoeren Peter, Dijkstra Tjeerd. 3D shape representation: Transforming polygons into voxels[OL]. http://www.eccentricvision.nl/papers/Oomes&al1997.pdf
  • 10Jones M W, Satherley R. Voxelisation: Modeling for volume graphics[A]. In: Girod B, Greiner G, Niemann H, et al, eds. Proceedings of Vision, Modeling, and Visualisation 2000[C]. Netherlands: IOS Press, 2000. 319~326

共引文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部