摘要
单目图像的深度估计可以从相似图像及其对应的深度信息中获得。然而,图像匹配歧义和估计深度的不均匀性问题制约了这类算法的性能。为此,提出了一种基于卷积神经网络(CNN)特征提取和加权深度迁移的单目图像深度估计算法。首先提取CNN特征计算输入图像在数据集中的近邻图像;然后获得各候选近邻图像和输入图像间的像素级稠密空间形变函数;再将形变函数迁移至候选深度图像集,同时引入基于SIFT的迁移权重SSW,并通过对加权迁移后的候选深度图进行优化获得最终的深度信息。实验结果表明,该方法显著降低了估计深度图的平均误差,改善了深度估计的质量。
The depth estimation of monocular image can be obtained from the similar image and its depth information.However,the performance of such an algorithm is limited by image matching ambiguity and uneven depth mapping.This paper proposes a monocular depth estimation algorithm based on convolution neural network(CNN)features extraction and weighted transfer learning.Firstly,CNN features are extracted to collect the neighboring image gallery of the input image.Secondly,pixel-wise dense spatial wrapping functions calculated between the input image and all candidate images are transferred to the candidate depth maps.In addition,the authors have introduced the transferred weight SSW based on SIFT.The final depth image could be obtained by optimizing the integrated weighted transferred candidate depth maps.The experimental results demonstrate that the proposed method can significantly reduce the average error and improve the quality of the depth estimation.
作者
温静
安国艳
梁宇栋
WEN Jing;AN Guo-yan;LIANG Yu-dong(School of Computer and Information Technology,Shanxi University,Taiyuan Shanxi 030006,China)
出处
《图学学报》
CSCD
北大核心
2019年第2期248-255,共8页
Journal of Graphics
基金
国家自然科学基金项目(61703252)
山西省高等学校科技创新项目(2015108)
关键词
单目深度估计
卷积神经网络特征
加权深度迁移
深度优化
monocular depth estimation
convolution neural network features
weighted depth transfer
depth optimization