摘要
本文研究了一种基于肤色特征的人脸检测算法。利用MATLAB软件将图像在色彩空间转换为归一化的RGB模型,对r、g分量进行统计分析,建立肤色分布高斯模型,并通过计算肤色相似度得到肤色概率似然图。随后经过平滑滤波、阈值分割等操作获得可能的脸部区域的二值图像,再利用面积中心和高宽比求出质心和偏转角度,与人脸模板进行相关系数的匹配,最后检测并标记出人脸区域。经过测试,此算法能够较好的实现人脸检测。
A color-based face detection algorithm was studied in this paper.MATLAB software was used to convert the image into a normalized RGB model in the color space,conduct statistical analysis on the r and g components,establish the skin color distribution gaussian model,and obtain the skin color probability likelihood diagram by calculating the skin color similarity.Then,through the smoothing filtering,threshold segmentation and other operations,the binary image of the possible face region is obtained,and the center of mass and the aspect ratio are used to obtain the centroid and the deflection angle,and the correlation coefficient is matched with the face template.Finally,the face area was detected and marked.After testing,this algorithm can realize face detection well.
作者
张新景
兰育飞
史颖刚
ZHANG Xin-jing;LAN Yu-fei;SHI Ying-gang
出处
《信息技术与信息化》
2019年第4期37-39,共3页
Information Technology and Informatization
基金
西北农林科技大学教育教学改革研究项目(JY1702022)
关键词
人脸检测
图像处理
模板匹配
Face detection
Picture processing
Templating matching