摘要
本文研究了一个三次等时中心在非光滑扰动下的极限环分支问题.利用非光滑系统的一阶平均方法,获得了在任意小的分段三次多项式扰动下,从未扰动系统的周期环域中至多分支出7个极限环,而且此上界可以达到,推广了光滑扰动下的结果.
This paper is devoted to study the bifurcation of limit cycles from a cubic isochronous center under any small non-smooth perturbations.By using the averaging theory for discontinuous differential systems,it proves that under any small piecewise cubic polynomial perturbations,at most seven limit cycles bifurcate from the period annulus sounding the center of the unperturbed system,and this upper bound can be reached,which extends the resultant under smooth perturbations.
作者
宋海风
彭临平
SONG Hai-feng;PENG Lin-ping(School of Mathematics and System Sciences,Beihang University,Beijing 100191,China;Key Laboratory of Mathematics,Information and Behavior of the Ministry of Education,Beihang University,Beijing 100191,China)
出处
《数学杂志》
2019年第3期431-439,共9页
Journal of Mathematics
基金
国家自然科学基金项目资助(11371046)
关键词
三次等时中心
非光滑扰动
极限环
平均方法
cubic isochronous center
non-smooth perturbations
limit cycles
averagingmethod