期刊文献+

基于非凸加权L_p范数稀疏误差约束的图像去噪算法 被引量:1

Non-convex weighted-L_p-norm sparse-error constraint for image denoising
下载PDF
导出
摘要 图像去噪过程中由于噪声的影响,无法学习到准确的先验知识,因此难以获取较优的稀疏系数。针对该问题,本文提出一种基于非凸加权 lp范数稀疏误差约束的图像去噪算法。该算法将系数求解过程分解为两个子问题,采用广义软阈值算法求解 lp范数中的稀疏系数,再利用代理算法求解稀疏误差约束中的稀疏系数,根据二者的均值来获取更具鲁棒性的稀疏系数。与当前几种典型的算法进行对比分析,实验结果表明:本文算法不仅具有更高的峰值信噪比(PSNR),而且在运行时间上具有更高的效率,同时在视觉角度上产生了更好的视觉感受。 Due to noise during image denoising,it is difficult to learn accurate prior knowledge.Therefore,obtaining a desirable sparse coefficient proves to be difficult.To solve this problem,this paper proposes an image denoising meth-od based on the non-convex weighted-lp-norm sparse-error constraint.This algorithm decomposes the coefficient-solv-ing process into two sub-problems.First,the algorithm solves the sparse coefficient in the lp norm by the generalized soft threshold value algorithm and then uses the surrogate algorithm to solve the sparse coefficient in the sparse-error constraint.Finally,the algorithm obtains a robust sparse coefficient according to its average value.The experimental res-ults show that the proposed algorithm features a high peak signal-to-noise ratio and high efficiency in terms of the run-ning time.Simultaneously,a desirable visual perception is obtained.
作者 徐久成 王楠 王煜尧 徐战威 XU Jiucheng;WANG Nan;WANG Yuyao;XU Zhanwei(College of Computer and Information Engineering,He’nan Normal University,Xinxiang 453007,China;Engineering TechnologyResearch Center for Computing Intelligence and Data Mining in Colleges and University of He’nan Province,Xinxiang 453007,China)
出处 《智能系统学报》 CSCD 北大核心 2019年第3期500-507,共8页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(61370169,61402153) 河南省科技攻关重点项目(142102210056,162102210261) 河南省高等学校重点科研项目(16A520057)
关键词 图像去噪 稀疏表示 稀疏系数 先验知识 L1范数 非凸加权 LP范数 稀疏误差约束 峰值信噪比 image denoising sparse representation sparse coefficient prior knowledge l1 norm non-convex weightedlp norm sparse error constraint peak signal-to-noise ratio
  • 相关文献

参考文献7

二级参考文献65

  • 1浦剑,张军平,黄华.超分辨率算法研究综述[J].山东大学学报(工学版),2009,39(1):27-32. 被引量:35
  • 2韩玉兵,陈小蔷,吴乐南.一种视频序列的超分辨率重建算法[J].电子学报,2005,33(1):126-130. 被引量:8
  • 3Nguyen N,Milanfar P.A computationally efficient image super resolution image reconstruction algorithm.IEEE Transactions on Image Processing,2001;10(4):573-583.
  • 4Vogel C R,Oinaa M E.Fast robust total variation-Based reconstruction of noisy,blurred images.IEEE Transactions on Image Processing,1998; 7(6):813-824.
  • 5Wohlberq B,Rodriguez P.An L1-TV algorithm for deconvolution with salt an pepper noise.IEEE Signal Processing,2009;4(19):20-24.
  • 6Shen H,Lan E,Zhang L.A total variation regularization based super resolution reconstruction algorithm for digital video.EURASIP Journal on Advances in Signal Processing,2007:1-16.
  • 7Elad M,Helor Y.A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur.IEEE Transactions on Image Processing,2001;10(8):1187-1193.
  • 8Park S C,Park M K,Moon G K.Super resolution image reconstruction:a technical overview.IEEE Signal Processing Magazine,2003;20(3):21-36.
  • 9Babacan S D,Molina R,Katsaggelos A K.Total variation super resolution using a variation approach.IEEE International Conference on Image Processing,2008;1(5):641-644.
  • 10Rudin L I,Osher S,Fatimi E.Nonlinear total variation based noise removal algorithms.Physcia D,1992;60(1-4):259-268.

共引文献87

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部