期刊文献+

Tailoring metallic surface properties induced by laser surface processing for industrial applications 被引量:2

Tailoring metallic surface properties induced by laser surface processing for industrial applications
下载PDF
导出
摘要 As a simple, reproducible, and pollution-free technique with the potential of integration and automation, laser processing has attracted increasing attention. Laser processing, which includes laser polishing, laser cleaning,and fabrication of laser-induced micro-/nano-structures, has been demonstrated to yield smooth, clean, functional surfaces and effective joining. Laser polishing is an advanced, highly efficient, and ecofriendly polishing technology. This study demonstrated the laser polishing of a selective laser-melted Inconel 718(IN718) superalloy and a titanium alloy sample. The surface roughnesses Raand Rzof the IN718 superalloy were respectively reduced from 8 and 33 μm to 0.2 and 0.8 μm, and the Raof the titanium alloy was reduced from 9.8 μm to 0.2 μm.Moreover, the wear resistance and corrosion resistance of the IN718 were apparently improved. As another surface-related processing method, laser cleaning was used to clean terminal blocks. Almost all the contaminants were removed, as verified by the absence of their chemical compositions and the decreased surface roughness. In addition, a superhydrophobic surface with a contact angle of over 160° and sliding angle of b8° on stainless steel was obtained by laser texturing treatment. These results demonstrate the high potential of laser processing in the scientific, technological, and industrial fields. As a simple, reproducible, and pollution-free technique with the potential of integration and automation, laser processing has attracted increasing attention. Laser processing, which includes laser polishing, laser cleaning,and fabrication of laser-induced micro-/nano-structures, has been demonstrated to yield smooth, clean, functional surfaces and effective joining. Laser polishing is an advanced, highly efficient, and ecofriendly polishing technology. This study demonstrated the laser polishing of a selective laser-melted Inconel 718(IN718) superalloy and a titanium alloy sample. The surface roughnesses Raand Rzof the IN718 superalloy were respectively reduced from 8 and 33 μm to 0.2 and 0.8 μm, and the Raof the titanium alloy was reduced from 9.8 μm to 0.2 μm.Moreover, the wear resistance and corrosion resistance of the IN718 were apparently improved. As another surface-related processing method, laser cleaning was used to clean terminal blocks. Almost all the contaminants were removed, as verified by the absence of their chemical compositions and the decreased surface roughness. In addition, a superhydrophobic surface with a contact angle of over 160° and sliding angle of b8° on stainless steel was obtained by laser texturing treatment. These results demonstrate the high potential of laser processing in the scientific, technological, and industrial fields.
出处 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2019年第1期29-34,共6页 纳米技术与精密工程(英文)
基金 National Key Research and Development Program of China under Grant 2018YFB1107700, 2018YFB1107400, and 2016YFB1102503 National Key Basic Research Program of China under Grant 2015CB059900 National Natural Science Foundation of China under Grant 51705013 Beijing Natural Science Foundation under Grant J170002
关键词 LASER PROCESSING LASER POLISHING LASER CLEANING SUPERHYDROPHOBICITY Laser processing Laser polishing Laser cleaning Superhydrophobicity
  • 相关文献

同被引文献25

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部