期刊文献+

表面弱边缘瑕疵检测算法及应用 被引量:3

Surface Weak Edge Flaw Detection Algorithm and Its Application
下载PDF
导出
摘要 工业环境中,产品表面质量是产品质量的重要组成部分,也是商品商业价值的重要保障。产品表面瑕疵由于受到光源、光照方式等因素的影响,容易形成灰度变化相对缓慢的过渡边缘即弱边缘。在工业生产中,弱边缘瑕疵由于其灰度缓慢变化,所以相对强边缘瑕疵较难被检测出。针对这一问题,提出了一种有效检测弱边缘瑕疵的方法。该方法利用Scharr算子能突出弱边缘的优势,结合形态学开闭滤波,从而达到强化弱边缘的效果。根据形成的弱边缘增强图像,利用最大熵阈值对图像进行分割得到瑕疵。对光缆生产流水线上采集的图像利用该方法进行测试分析。实验结果表明,使用改进的弱边缘瑕疵检测算法能更好地检测出弱边缘,从而更加有效地识别表面瑕疵,提高了产品质量。 In the industrial environment,the surface quality of products has become an important part of product quality as well as an important guarantee for the commercial value of commodities.Influenced by factors such as light source,light mode and so on,product surface defects can be prone to form weak edge that the changes in their gray scale are relatively slow.In industrial production,compared with strong edge blemishes,weak edge blemishes are more difficult to be detected due to their gradual change in gray level.Therefore,we propose a method to detect the weak edge defects effectively.In order to strengthen the weak edge,the advantage that Scharr operator can highlight the weak edge is utilized,combining with the morphological opening and closing filtering,and then the maximum entropy threshold is used to segment the image to get the flaw.So far,the images collected on the production line of optical fiber cable are tested and analyzed.Experiment shows that the improved weak edge detection algorithm can better detect weak edge flaws,which identifies surface defects more effectively and accordingly improves product quality.
作者 蒋洁琦 杨庚 刘沛东 钱晨 JIANG Jie-qi;YANG Geng;LIU Pei-dong;QIAN Chen(School of Computer Science and Software,Nanjing University of Posts and Telecommunications,Nanjing 210046,China;Jiangsu Hengtong Au Optronics Co,Suzhou 215200,China;School of Optoelectronic Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210046,China)
出处 《计算机技术与发展》 2019年第5期142-147,共6页 Computer Technology and Development
基金 国家自然科学基金(61572263) 江苏省自然科学基金政策引导类计划-前瞻性联合研究项目(2016ZS04)
关键词 图像处理 弱边缘 表面瑕疵检测 Scharr算子 边缘检测 image processing weak edge surface defect detection Scharr operator edge detection
  • 相关文献

参考文献6

二级参考文献51

  • 1刘扬,黄庆明,高文,叶齐祥.自适应高斯混合模型球场检测算法及其在体育视频分析中的应用[J].计算机研究与发展,2006,43(7):1207-1215. 被引量:18
  • 2宋新,罗军,王鲁平,沈振康.基于Mean Shift聚类的边缘检测方法[J].弹箭与制导学报,2007,27(1):366-368. 被引量:8
  • 3王博,潘泉.基于相关度量的高椒盐噪声软阈值直方图滤波算法[J].电子学报,2007,35(7):1347-1351. 被引量:17
  • 4Otsu N. A Threshold Selection Method from Gray-Level Histogram. IEEE Trans on Systems, Man and Cybemetics, 1979, 15 : 652 - 655
  • 5Kapur J N, Sahco P K, Wong A K C. A New Method for Gray- Level Picture Thresholding Using the Entropy of the Histogram. Computer Vision, Graphics and Image Processing, 1985, 29:273 - 285
  • 6Kittler J, lllingworth J. Minimum Error Thresholding. Pattern Recognition, 1986, 19(1) : 41 - 47
  • 7K Boesen,K Rehm,K Schaper,et al.Quantitative comparison of four brain extraction algorithms[J].Neuroimage,2004,22(3):1255-61
  • 8Le Goualher,A M Argenti,et al.Statistical sulcus shape comparisons:Application to the detection of genetic encoding of the central sulcus shape[J].Neuroimage,2000,19(11):564-574
  • 9N K Logothetis,J Pauls,M Augath,et al.Neurophsiological investigation of the basis of the fMRI signal[J].Nature,2001,412(12):150-157
  • 10M Kass,A Witkin,D Terzopoulous.Snake:Active contour models[J].International Journal of Computer Vision,1987,1(4):321-331

共引文献58

同被引文献22

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部