期刊文献+

基于企业环保信誉评估的云制造系统

Cloud Manufacturing System Based on Enterprise Environmental Protection Reputation Evaluation
下载PDF
导出
摘要 云制造是一种新型的网络化制造模式,它可以缓解制造业闲置制造能力、资源稀缺、制造能力过剩、制造能力不足等问题和实现资源合理有效的配置。云制造环境下的制造资源优化配置问题是云制造的核心问题,其优化模型的合理性与优化方法的优劣将对云制造服务的质量和效率产生深入影响。随着社会生产力的不断发展,制造业的环境污染也成了不容忽视的问题。为了鼓励企业进行产业升级,推行绿色发展理念,提出了企业环保信誉评估模型,并将模型计算出的环保信誉指标纳入QoS评估模型中,进而提出了一种基于企业环保信誉的QoS评估模型。此外考虑到现有算法的局限性,为了更有效地求解QoS评估模型,提出一种SGWO算法。实验结果表明,SGWO算法在QoS模型中相对于现有算法呈现出较好的优化效果,从而解决了云制造环境下基于环保度的服务组合质量问题。 Cloud manufacturing is a new type of networked manufacturing mode which can alleviate the problems of idle manufacturing capacity,scarce resources,surplus manufacturing capacity,insufficient manufacturing capacity and achieve effective allocation of recourses in the manufacturing industry.The optimization of manufacturing resources in the cloud manufacturing environment is the core of cloud manufacturing.The rationality of the optimization model and the advantages and disadvantages of optimization method will have a profound influence on the quality and efficiency of the cloud manufacturing service.In addition,with the continuing development of social productivity,environmental pollution has become a problem that can’t be ignored in the manufacturing industry.In order to encourage enterprises to carry out industrial upgrading and promote the concept of green development,we propose an evaluation model of enterprises’ environmental protection reputation.The environmental protection reputation indexes calculated by the model are incorporated into the QoS evaluation model,and then a QoS evaluation model based on enterprises’ environmental protection reputation is proposed.Considering the limitations of the existing algorithms,we put forward a SGWO algorithm to solve the QoS evaluation model more effectively.The experiment shows that the SGWO algorithm presents a better optimization performance compared with the existing algorithm in the QoS model,and can solve the quality problem of service composition based on environmental protection in the cloud manufacturing environment better.
作者 汪正山 杨志学 汤勇 许斌 WANG Zheng-shan;YANG Zhi-xue;TANG Yong;XU Bin(School of Automation,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;School of Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处 《计算机技术与发展》 2019年第5期162-167,共6页 Computer Technology and Development
基金 江苏省自然科学基金(BK20160910)
关键词 QOS 云制造 SGWO 环保信誉评估 QoS cloud manufacturing SGWO environmental credit assessment
  • 相关文献

参考文献4

二级参考文献48

  • 1张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225
  • 2李宁,孙德宝,邹彤,秦元庆,尉宇.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报,2006,29(11):2052-2060. 被引量:48
  • 3吴亮红,王耀南,周少武,袁小芳.采用非固定多段映射罚函数的非线性约束优化差分进化算法[J].系统工程理论与实践,2007,27(3):128-133. 被引量:27
  • 4Eberhart R, Kennedy J. A new optimizer using particle swarm theory[ C]//Proc of 6th Int Syrup Micro Machine and Human Science. [ s. 1. ] : [ s. n. ].
  • 5Kennedy J, Eberhart R C. Particle swarm optimization [ C ]/// Proc of IEEE Int Conf on Neural Networks. [ s. I. ] : [ s. n. ], 1995 : 1942-1948.
  • 6Binkley K J, Hagiwara M. Particle swarm op- timization with area of influence: increasing the effectiveness of swarm[ C ]// Proceeding of the IEEE Swarm Intelligence Symposium. [s.l. ] :[s.n. ] ,2005.
  • 7Metropolis N, Rosenbluth A, Rosenbluth M, et al. Equation of state calculations by fast computing machines [ J ]. Journal of Chemi- cal Physics, 1953,21 (6) : 1087-1092.
  • 8Kirkpatric S, Gelatt J C D, Vecchi M P. Op- timization by simulated annealing [ J ]. Sci- ence,1983,220(4598) :671-680.
  • 9QU B, SUGANTHAN P N, DAS S. A distance-based locally in- formed particle swarm model for multimodal optimization [ J]. IEEE Transactions on Evolutionary Computation, 2013, 17 (3) : 387 - 402.
  • 10MIRJALILI S, MIILIALILI S M, LEWIS A. Grey wolf optimization [ J]. Advances in Engineering Software, 2014, 69(7) : 46 - 61.

共引文献184

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部