期刊文献+

关于有限Abel p-群的自同构群 被引量:1

On the Automorphism Groups of Finite Abelian p-Groups
下载PDF
导出
摘要 从有限Abel p-群P的型不变量出发,给出了其自同构群AutP的阶的计算公式,并利用|AutP|的计算公式得到了下面3个结果:1.由有限Abel p-群的型不变量的两种变换得到了其自同构群的阶的变化规律;2.用群的阶、秩、幂指数三个量界定了有限Abel p-群的自同构的阶;3.对部分Frattini子群为p阶群的有限p-群,确定了其自同构群的阶何时达到最小值和最大值. Starting from the invariant of a finite abelian p-group P, the authors obtain the computational formula of the order of its automorphism group AutP. Three applications of this computational formula are given as follows. Firstly, they find some properties on the order of its automorphism group from two transformations of invariant of a finite abelian p-group. Secondly, they estimate the order of automorphism of a finite abelian p-group by a function depending on order, rank and exponent of this group. Thirdly, letting P be a finite p-group with Frattini subgroup of prime order, they give the conditions to guarantee the order of AutP attains the maximal value or minimal value, respectively.
作者 徐涛 刘合国 余杨 XU Tao;LIU Heguo;YU Yang(Department of Science,Hebei University of Engineering,Handan 056038,Hebei,China;College of Mathematics and Statistics,Hubei University,Wuhan 430062,China)
出处 《数学年刊(A辑)》 CSCD 北大核心 2019年第2期199-210,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.11626078 No.11371124) 河北省教育厅青年基金(No.QN2016184)的资助
关键词 有限Abel P-群 自同构群 FRATTINI子群 Finite abelian p-group Automorphism group Frattini subgroup
  • 相关文献

参考文献4

二级参考文献20

  • 1Gorenstein D. Finite Groups. New York: Harper and Row, 1968.
  • 2Robinson D J S. A Course in the Theory of Groups, 2nd ed. New York: Springer-Verlag, 1996.
  • 3Blackburn S R. Groups of prime power order with derived subgroup of prime order. J Algebra, 1999, 219:625-657.
  • 4Winter D. The automorphism group of an extraspecial p-group. Rocky Mountain J Math, 1972, 2:159-168.
  • 5Dietz J. Automorphisms of p-groups given as cyclic-by-elementary abelian central extensions. J Algebra, 2001, 242: 417-432.
  • 6Liu H G, Wang Y L. The automorphism groups of certain finite p-groups. In press.
  • 7Fuchs L. Infinite abelian groups, Vol. II. New York: Academic Press, 1973.
  • 8徐明耀.有限群导引[M].北京:科学出版社,1999.
  • 9HALL P. A contribution to the theory of groups of prime-power order[J ]. Proc Londow Math Soc, 1993,36: 29-95.
  • 10BUGANT R M, ROMANKOV V A. Automorphism groups of relatively free groups [J ]. Math Proc Camb Phil Soc, 1999, 127:411-424.

共引文献24

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部