期刊文献+

TiO_2材料(100)典型晶面的形成与电子结构的研究

Study on Formation and Electronic Structure of (100) Characteristic Plane of TiO_2 Material
下载PDF
导出
摘要 在超软赝势密度泛函理论基础上计算分析了TiO_2基(100)晶面低维材料的形成、电子结构和光学性质。结果表明,TiO_2基(100)晶面低维材料的形成焓大于TiO_2块体材料的形成焓,其稳定性比TiO_2块体材料低。TiO_2基(100)晶面低维材料带隙为2. 760 eV,高于其体材料,其带隙为间接型。其价带顶和导带底主要分别由O p电子和Ti d电子形成,并且Ti的d电子和O的p电子在-2. 5 eV处有局域作用。TiO_2基(100)晶面低维材料电子局域化程度增大,Ti和O之间的离子性结合程度增强。TiO_2基(100)晶面低维材料在140. 8 nm处有最强的反射峰,其反射系数达23. 9%,其在34. 5 nm处有强的选择性吸收,并且在33. 3 nm和138. 9 nm处有最强的能量损失。 The formation, electronic structure as well as optical properties of the (100) plane low dimensional TiO 2 based material was researched by ultra-soft pseudo-potential density functional theory method. The results show that the formation enthalpy of (100) plane low dimensional TiO 2 based material is larger than that of the bulk material, its stability is relatively lower. The band gap of (100) plane low dimensional TiO 2 based material is 2.760 eV, which is larger than that of the bulk material. The band gap is indirect. The top valance band and the bottom conduction band is composed by O p and Ti d electrons, the O p and Ti d electrons have strong localized interaction at -2.5 eV. The electron localization trend is strengthened for the (100) plane low dimensional TiO 2 based material, the ionic bonds between Ti and O are enhanced. There is strong reflectivity at 140.8 nm for the (100) plane low dimensional TiO 2 based material, the reflectivity is 23.9%. It has strong absorption at 34.5 nm and it has strong loss function both at 33.3 nm and 138.9 nm.
作者 李凡生 余小英 唐文翰 房慧 王如志 LI Fan-sheng;YU Xiao-ying;TANG Wen-han;FANG Hui;WANG Ru-zhi(Academy of Physics and Electronic Engineering, Guangxi Normal University for Nationalities, Chongzuo 532200, China;College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China)
出处 《人工晶体学报》 EI CAS 北大核心 2019年第4期611-615,626,共6页 Journal of Synthetic Crystals
基金 国家自然科学基金(11347141) 广西民族师范学院科研经费资助项目(2018YB002)
关键词 TIO2 低维 电子结构 光学性质 TiO 2 low dimension electronic structure optical property
  • 相关文献

参考文献2

二级参考文献15

  • 1Redfern P C,Zapol P,Curtiss L A. J Pbys Chem A[J] ,2000,104:5 850.
  • 2Bond D. J Phys Chem A[J] ,2008,112:1 656.
  • 3Alkorta 1, Elguero J. Chem Phys Lett [ J ] ,2006,425 : 221.
  • 4DiLabio G A,Pratt D. J Phys Chem A[J] ,2000,104:1 938.
  • 5Frisch M J ,Trucks G W,Schlegel H B,Scuseria G E,Robb M A,Cheeseman J R, Montgomery J A,Jr T V,Kudin K N, Burant J C,Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P,Cross J B,Adamo C, Jaramillo J,Gomperts R,Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J,Stefanov B B,Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T,Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C,Pople J A Gaussian 03 Revision E 01 ,Gaussian Inc : Pittsburgh PA 2007.
  • 6Scott A P,Radom L. J Phys Chem A[J] ,1996,100:16 502.
  • 7Zhao Y,Truhlar D G. J Chem Theory Comput[ J] ,2005,1:415.
  • 8Hamprecht F A, Cohen A J,Tozer D J, Handy N C. J Chem Phys [ J ], 1998,109:6 264.
  • 9Zhao Y,Pu J,Lynch B J,Truhlar D G. Phys Chem Chem Phys[J] ,2004,6:673.
  • 10Zhao Y,Truhlar D G. J Phys Chem A[J] ,2004,108:6 908.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部