摘要
分别采集不同地区的PM_(2.5)样品,引用超声提取——固相萃取法(SPE),将样品进行分离,获取大气细颗粒中的多环芳烃(PAHs)。针对不同的固定相、洗脱液按照一定的比例进行PAHs的召回率对比,获取最优预处理条件。构建基于HPLC-UV的大气污染细颗粒中有机成分苯并芘智能检测方法,获取较为典型的PAHs。并对某城市自2015年5月1日至5月16日大气中含有的苯并芘(C_2OH_(12))进行检测。实验结果表明,所提方法能够快速、有效地检测出大气中C_2OH_(12)的含量以及浓度。
PM2.5 samples from different regions were collected, and ultrasonic extraction, solid phase extraction(SPE), was used to separate the samples to obtain polycyclic aromatic hydrocarbons(PAHs) in the fine particles of the atmosphere. The recall ratios of PAHs were compared according to a certain ratio of different stationary phases and eluents to obtain optimal pretreatment conditions. The intelligent detection method of organic component benzopyrene in airborne fine particles based on HPLC-UV was constructed to obtain typical PAHs. The benzopyrene(C2OH12) contained in the atmosphere from May 1 to May 16,2015 was tested in a city. The experimental results show that the proposed method can quickly and effectively detect the content and concentration of C2OH12 in the atmosphere.
作者
曹晓川
Cao Xiaochuan(Liaoning Jinzhou Teachers Further Education Institute, Jinzhou 121000, China)
出处
《环境科学与管理》
CAS
2019年第4期130-134,共5页
Environmental Science and Management
基金
辽宁省教育信息协会2018年度科研规划立项课题(LJX18GH025)
关键词
大气污染细颗粒
有机成分苯并芘
智能检测
atmospheric pollution fine particles
organic component benzopyrene
intelligent detection