摘要
为研究核桃质量在线检测的方法,以"礼品2号"核桃为样本,构建图像采集系统采集样本图像信息,对图像进行预处理、形态逻辑学算法获取样本投影面积,并建立最小二乘支持向量机(LS-SVM)和多项式回归方程质量预测模型。结果表明,LS-SVM质量预测模型相关系数为0.897 4,相对误差均值为6.5%;一元二次多项式回归方程质量预测模型决定系数为0.857 207,相对误差均值为5.9%,均满足在线质量检测要求。基于计算机视觉技术实现对核桃质量的预测,为实现核桃在线分选提供理论基础。
To study the method of on-line detection of walnut weight.This study used“lipin No.2”walnut as a test sample to construct an image acquisition system to collect sample image information,preprocess the image,and obtain a sample projection by morphological logic algorithm area,and establish a least squares support vector machine(LS-SVM)and polynomial regression equation weight prediction model.The results showed that the correlation coefficient of ls-svm weight prediction model was 0.897 4,and the average relative error was 6.5%.The determination coefficient of the weight prediction model of quadratic regression equation with one unknown was 0.857 207,and the mean relative error was 5.9%,which all meat the requirements of online weight detection.Based on computer vision technology,this study can predict the weight of walnut and provide a theoretical basis for online separation of walnut.
作者
李成吉
张淑娟
孙海霞
陈彩虹
邢书海
赵旭婷
LI Chengji;ZHANG Shujuan;SUN Haixia;CHEN Caihong;XING Shuhai;ZHAO Xuting(College of Engineering,Shanxi Agricultural University,Jinzhong,Shanxi 030801,China)
出处
《农产品加工》
2019年第10期10-13,共4页
Farm Products Processing
基金
国家自然科学基金项目(31271973)
山西省应用基础研究项目(201801D121252)
晋中市科技重点研发计划(农业)项目(Y172007-4)
关键词
计算机视觉
核桃
质量
最小二乘支持向量机
多项式回归方程
computer vision
walnut
weight
least squares-support vector machine
polynomial regression equation