期刊文献+

关于平板屈曲重调和特征值问题的H^2协调谱元法

The H^2-conforming spectral element method for the biharmonic eigenvalue problem of plate buckling
下载PDF
导出
摘要 通过使用H^2协调谱元法,具体求解了平板屈曲重调和特征值问题。首先给出H^2协调谱元法的误差估计,然后利用广义雅可比多项式和节点基函数构造二维谱元空间的基函数,最后报道了L形区域和方形区域上的数值实验,实验结果表明谱元法所计算的特征值受网格直径和多项式次数的影响,在区域选择上较谱方法更为灵活,适用于平板屈曲重调和特征值问题。 By using H^2-conforming spectral element method,the biharmonic eigenvalue problem of plate buckling is solved. Firstly,the error estimates of H^2-conforming spectral element method are given. Then a set of basis functions on the two-dimensional spectral element space is constructed by generalized Jacobi polynomials and nodal basis functions. Finally,the numerical experiments are carried out on the L-shaped domain and the square domain. The experimental results show that eigenvalues obtained by spectral element method are affected by grid diameter and degree of polynomial. The spectral element method is more flexible in domain than spectral method and is applicable to the biharmonic eigenvalue problem of plate buckling.
作者 王世杰 闭海 WANG Shijie;BI Hai(School of Mathematical Sciences, Guizhou Normal University, Guiyang, Guizhou 550025, China)
出处 《贵州师范大学学报(自然科学版)》 CAS 2019年第3期77-83,共7页 Journal of Guizhou Normal University:Natural Sciences
基金 国家自然科学基金资助项目(11761022) 2015年度贵州省千层次创新型人才资助项目
关键词 重调和特征值 平板屈曲 H^2协调谱元法 节点基函数 广义雅可比多项式 误差估计 biharmonic eigenvalues plate buckling H^2-conforming spectral element method nodal basis functions generalized Jacobi polynomials error estimates
  • 相关文献

参考文献2

二级参考文献13

  • 1Chen G, Coleman M, Zhou J. Analysis of vibration eigenfrequencies of a thin plate by the keller - rubinow wave method I: clamped boundary conditions with rectangular or circular geometry [ J] . SIAM J Appl Math, 1991,51 (4) :967 -983.
  • 2Coffman C. On the structure of solutions to 82u = Au which satisfy the clamped plate conditions on a right angle [ J ]. SIAM J Math Anal, 1982,13 (5) :746 - 757.
  • 3Hackbusch W, Hofmann G. Results of the eigenvalue problem for the plate equation [ J ] Zamp, 1980,31 (6) : 730 - 739.
  • 4Wieners C. A numerical existence proof of nodal lines for the first eigenfunction of the plate equation [ J]. Arch Math, 1996, 66(5) :420 -427.
  • 5Bauer L, Reiss E. Block five diagonal matrices and the fast numerical computation of the biharmonic equation [ J ] Math Comput, 1972,26:311 - 326.
  • 6Bjcrstad P E, Tj0stheim B P. Timely Communication: Efficient algorithms for solving a fourth order equation with the spectral - galerkin method [ J ] SIAM J Sci Comput, 1997,18 (2) :621 - 632.
  • 7Bjorstad P E, Tj0stheim B P. High precision solutions of two fourth order eigenvalue problems[J]. Computing, 1999,63 (2) : 97 - 107.
  • 8Min M, Gottlied D. On the convergence of the fourier approximation for eigenfuncation of discontinuous problem [ J ]. SIAM J Num Anal, 2003,40 (6) : 2254 - 2269.
  • 9Shen J, Tang T, Wang L L. Spectral and High- Order Methods with Applications[ M]. Beijing:Science Press,2006.
  • 10Wienrs C. A numerical existence proof of nodal lines for the first eigenfunction of the plat equation[ J]. Arch Math, 1996, 66 ( 5 ) :420 - 427.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部