期刊文献+

基于粒子群优化的多虚拟网络同步映射 被引量:2

Multi virtual network synchronization mapping method based on particle swarm optimization
下载PDF
导出
摘要 针对多个虚拟网络同时映射的资源优化问题,提出一种基于粒子群优化的多个虚拟网络同步映射方法。通过在传统映射模型中引入判断指标,重新构建多个虚拟网络同步映射优化模型;将单个虚拟网络看作粒子子群,在粒子群优化算法的框架内将多虚拟网络同时映射看作是多个子群交互的协同优化问题,实现底层网络资源的全局最优化配置。实验结果表明,该方法能够满足多个服务提供商同步映射需求,能够在全局范围内实现资源的最优化配置,有效提升了多虚拟网络同步映射的性能指标。 To solve the problem of simultaneous mapping resource optimization for multiple virtual networks,a method for simultaneous mapping of multiple virtual networks based on particle swarm optimization (PSO) was proposed.Multiple virtual network synchronization mapping optimization model was reconstructed by introducing the judgment index into the traditional mapping model.A single virtual network was used as a particle subgroup,within the framework of particle swarm optimization algorithm,multiple virtual network simultaneous mapping was considered as a collaborative optimization problem for multiple subgroups,which realized the global optimization of the underlying network resources.Experimental results show that the proposed method can not only meet the needs of multiple service providers to synchronize the mapping,but also achieve the optimal allocation of resources in the global scope,which effectively improves the performance of multi virtual network synchronization mapping performance.
作者 程浩 刘洋 CHENG Hao;LIU Yang(Computer College,Henan University of Engineering,Zhengzhou 451191,China;Institute of Cloud Computing and Big Data,Henan University of Economics and Law,Zhengzhou 450046,China)
出处 《计算机工程与设计》 北大核心 2019年第5期1288-1293,共6页 Computer Engineering and Design
基金 郑州市科技局科技公关基金项目(141PPTGG374)
关键词 虚拟网络映射 多目标映射 资源优化 粒子群算法 子群协同 virtual network mapping multi-objective mapping resource optimization particle swarm optimization subgroup co-operation
  • 相关文献

参考文献13

二级参考文献152

  • 1Buyya Rajkumar, Yeo Chee Shin, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems, 2009, 25(6) 599 616.
  • 2Ibarra O, Kim C. Heuristic algorithms for scheduling inde- pendent tasks on nonidentical processors. Journal of the ACM, 1977, 77(2): 280-289.
  • 3Duan Rubing, Prodan Radu, Fahringer Thomas. Perform ance and cost optimization for multiple large-scale grid work- flow applications//Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. Reno, Nevada, USA, 2007.- 110 121.
  • 4Nascimento Aline P, Boeres Cristina, Rebello Vinod E F. Dynamic self-scheduling for parallel applications with task dependencies//Proceedings of the 6th International Workshop on Middleware for Grid Computing (MGC 08). Belgium, 2008:1-6.
  • 5Atakan D, Fusun O. Genetic algorithm based scheduling of meta-tasks with stochastic execution times in heterogeneous computing systems. Cluster Computing, 2003, 7(2) : 177=190.
  • 6Buyya R, Murshed M, Abramson D, Venugopal S. Schedu ling parameter sweep applications on global grids: A deadline and budget constrained cost time optimization algorithm. Software-Practice and Experiences, 2005, 35(5): 491-512.
  • 7Kumar Subodha, Dutta Kaushik et al. Maximizing business value by optimal assignment of jobs to resources in grid com puting. European Journal of Operational Research, 2009, 194(3) 856-872.
  • 8Yang J, Khokhar A, Sheikh S, Ghafoor A. Estimating exe- cution time for parallel tasks in heterogeneous processing (HP) environment//Proceedings of the Heterogeneous Corn puting Workshop. Cancun, 1994:23-28.
  • 9Beltrame G, Brandolese C, Fornaciari W, Salice F, Sciuto D, Trianni V. Dynamic modeling of inter-instruction effectsfor execution time estimation//Proceedings of the 14th Inter- national Symposium on System Synthesis. Canada, 2001: 136-141.
  • 10Kelly F P, Maulloo A K, Tan D K H. Rate control for com- munication networks: Shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 1998, 49(3): 237-252.

共引文献144

同被引文献26

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部