期刊文献+

基于迁移学习及特征融合的轮胎花纹图像分类 被引量:8

Tread pattern image classification with feature fusion based on transfer learning
下载PDF
导出
摘要 为提高图像分类性能,解决因训练数据不足导致卷积神经网络模型过拟合的问题,提出一种基于迁移学习和特征融合的轮胎花纹图像分类算法。将HSV颜色直方图、GIST描述子与方向梯度直方图结合作为轮胎图像低层特征;将迁移学习引入卷积神经网络模型训练中,通过轮胎图像数据集对预训练模型参数微调,获得适用于轮胎花纹图像的新模型,提取全连接层特征作为图像高层特征;将低层和高层特征融合作为轮胎图像最终特征用于训练SVM分类器,实现高效分类。实验结果表明了所提算法的有效性。 To improve image classification performance and relieve the over-fitting problem in convolutional neural network (CNN) model training due to the lack of large scale training data,an effective tread pattern classification algorithm with feature fusion based on transfer learning was proposed.A multi-view low-level feature was designed which was the combination of HSV color histogram,GIST descriptor and histogram of oriented gradient (HOG).Transfer learning was introduced into model trai- ning.The parameters of a pre-trained model were fine-tuned using tread pattern image data,and a new model for the task of tread pattern classification was produced.Features extracted from the fully-connected layer of the new model were used as high-level features of the tread pattern images.Fusion of the low-level feature and high-level feature formed the final feature of the tread pattern image,to train SVM classifier for image classification.The outstanding performance of the proposed algorithm is demonstrated by experimental results.
作者 刘颖 张帅 范九伦 LIU Ying;ZHANG Shuai;FAN Jiu-lun(Center for Image and Information Processing,Xi ’an University of Posts and Telecommunications,Xi ’an 710121,China;Key Laboratory of Electronic Information Application Technology for Scene Investigation ofMinistry of Public Security,Xi ’an 710121,China;International Joint Research Center forWireless Communication and Information Processing,Xi ’an 710121,China)
出处 《计算机工程与设计》 北大核心 2019年第5期1401-1406,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61671377) 公安部科技强警基金项目(2016GABJC51) 陕西省国际合作研究基金项目(2017KW-013)
关键词 轮胎花纹图像分类 迁移学习 卷积神经网络 高层特征 特征融合 tread pattern image classification transfer learning convolutional neural network high-level features feature fusion
  • 相关文献

参考文献4

二级参考文献38

  • 1万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 2左森,郭晓松,万敬,周召发.多项式核函数SVM快速分类算法[J].计算机工程,2007,33(6):27-29. 被引量:7
  • 3Geronimo D, Lopez A. Survey of pedestrain detection for ada- vanced driver assistance systems]-J2. IEEE Trans. On Pattern Analysis and Machine Intelligence,2010,32(7): 1239-1258.
  • 4Luo R C,Chen O. Wireless and Pyroelectric Sensory Fusion Sys- tem for Indoor Human/Robot Localization and Monitoring[J]. IEEE/ASME Transactions on Mechatronics, 2013,18 (3) : 845- 853.
  • 5Uddin M-Z, Kim D-H, Kim J T, et al. An Indoor Human Activi- ty Recognition System for Smart Home Using Local Binary Pat-tern Features with Hidden Markov ModelsFJ]. Indoor and Built Environment, 2013,22 (1) 289-298.
  • 6Dalai N, Tfiggs B. Histograms of Oriented Gradients for Hu- manDetection[C]//Proceedings of IEEE Computer Society Con- ference On Computer Vision and Pattern Recognition. IEEE Press, 2005 : 886-893.
  • 7Ding Jian-hao,Wang Yi-gang,Geng Wei-dong. An HOG-CT hu- man detector with histogram-based search[J]. Multimedia Tools and Applications, 2013,63(3) :791-807.
  • 8Dohi K, Negi K,Shibata Y, et al. FPGA Implementation of Hu- man Detection by HOG Features with AdaBoost [J]. IEICE Transactionson Information and Systems, 2013, 96 ( 8 ) : 1676- 1684.
  • 9Cristina C, Daniela M, De Diego M, et al. HoGG: Gabor and HoG-based human detection for surveillance in non-controlled environments[J]. Neurocomputing, 2013,100 : 19-30.
  • 10Walk S. New Features and Insights for Pedestrian Detection [C]// 2010 IEEE Conference on Computer Vision and Pattern Recog- nition. 2010:1030-1037.

共引文献55

同被引文献42

引证文献8

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部