期刊文献+

融合深度学习和语义树的草图识别方法 被引量:3

Sketch Recognition Combining Deep Learning and Semantic Tree
下载PDF
导出
摘要 现有的草图识别框架利用整幅图像作为网络输入,草图识别过程可解释性较差。文中融合深度学习和语义树,提出草图语义网(Sketch-Semantic Net)。首先对草图进行部件分割,将单幅完整的草图分割为多个具有语义概念的部件图。然后利用深度迁移学习识别草图部件。最后通过语义树的语义概念关联部件同部件所属草图对象类别,较好地弥补sketch 图像从底层语义到高层语义之间的语义鸿沟。在广泛应用的草图分割数据集上的实验验证文中方法的有效性。 In the existing sketch recognition based on deep learning,a whole sketch is employed as an input of network,and therefore the recognition process is uninterpretable.The semantic tree is introduced into sketch recognition based on deep learning,and a sketch recognition method,sketch- semantic net,is proposed in this paper.Firstly,data-driven segmentation method is utilized to divide a whole sketch into component sketches with the semantic information.Secondly,the component sketches are recognized by transfer deep learning.Finally,the component sketches are associated with the sketch categories according to the semantic concepts of the semantic tree,and thus the gap between low level semantics and high level semantics is reduced.The experimental results on the popular Sketch_ dataset demonstrate the effectiveness of the proposed method.
作者 赵鹏 冯晨成 韩莉 纪霞 ZHAO Peng;FENG Chencheng;HAN Li;JI Xia(School of Computer Science and Technology,Anhui University,Hefei 230601)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2019年第4期361-368,共8页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61602004) 安徽省重点研究与开发计划项目(No.1804d08020309) 安徽省自然科学基金项目(No.1908085MF188,1908085MF182) 安徽省高校自然科学研究重点项目(No.KJ2016A041,KJ2017A011)资助~~
关键词 草图识别 语义树 卷积神经网络 深度学习 Sketch Recognition Semantic Tree Convolutional Neural Network Deep Learning
  • 相关文献

参考文献3

二级参考文献33

  • 1孙正兴,冯桂焕,周若鸿.基于草图的人机交互技术研究进展[J].计算机辅助设计与图形学学报,2005,17(9):1889-1899. 被引量:54
  • 2方贵盛,何利力,孔繁胜.计算机辅助草绘设计技术研究[J].计算机工程,2006,32(18):1-2. 被引量:4
  • 3Rubine D. Specifying Gestures by Example[J]. ACM Journal on Computer Graphics, 1991, 25(4): 329-337.
  • 4Kurtoglu T, Stahovich T F. Interpreting Schematic Sketches Using Physical Reasoning[C]//Proc. of AAAI Spring Symposium on Sketch Understanding. Palo Alto, USA: AAAI Press, 2002: 78-85.
  • 5Fonseca M, Pimentel C, Jorge J. CALl: An Online Scribble Recognizer for Calligraphic Interfaces[C]//Proc. of AAAI Spring Symposium on Sketch Understanding. Palo Alto, USA: AAAI Press, 2002: 51-58.
  • 6Leslie M G, Levent B K, Thomas F S, et al. Combining Geometry and Domain Knowledge to Interpret Hand-drawn Diagrams[J]. Computers and Graphics, 2005, 29(4): 547-562.
  • 7Liao Shizhong, Wang Xiaohun, Lu Jinliang. An Incremental Bayesian Approach to Sketch Recognition[C]//Proe. of the 4th International Conference on Machine Learning and Cybernetics. Guangzhou, China: [s. n.], 2005: 4549-4553.
  • 8Eitz M,Hays J,Alexa M.How do humans sketch objects?[J].ACM Transactions on Graph,2012,31(4):44-54.
  • 9Schneider R G,Tuytelaars T.Sketchclassification and clas- sification-driven analysis using fisher vectors[J].ACM Transactions on Graphics,2014,33(6):174-183.
  • 10Sun Zhenbang,Wang Changhu,Zhang Liqing,et al.Free hand-drawn sketch segmentation[C]//Proceedings of the 12th European Conference on Computer Vision.Florence:Springer,2012:626-639.

共引文献45

同被引文献15

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部