期刊文献+

基于自适应邻域策略的改进型MOEA/D算法 被引量:2

Improved MOEA/D Algorithm Based on Adaptive Neighborhood Strategy
下载PDF
导出
摘要 为避免传统MOEA/D算法使用固定领域规模易造成种群进化效率降低的情况,提出一种基于自适应邻域策略的改进算法。设计一种能够反映子问题进化幅度和种群进化状态的判断机制。针对进化过程中的收敛性和分布性需求,提出基于进化状态判断的自适应邻域策略,从而根据种群和子问题的进化状态设定不同的邻域规模。使用WFG系列测试函数进行实验,结果表明,该算法能有效平衡进化过程中种群的收敛性与分布性,提高解集的整体性能。 Traditional Multi-objective Evolutionary Algorithm based on Decomposition(MOEA/D)uses the fixed neighborhood scale,which reduces the population evolution efficiency.To solve this problem,an improved algorithm based on the Adaptive Neighborhood Strategy(ANS) is proposed.This paper designs a kind of judgment mechanism which can reflect the evolution magnitude of the sub-problems and the evolutionary state of the population.Based on evolutionary state judgments,an ANS is proposed to address the requirements of convergence and distribution in the evolutionary process,and then it can set different neighborhood sizes according to the evolutionary states of the population and sub-problems.Use the WFG series of functions to do the test,and the results show that this algorithm can effectively balance the convergence and distribution of population in the evolution the process,and improve the overall performance of the solution set.
作者 耿焕同 韩伟民 丁洋洋 周山胜 GENG Huantong;HAN Weimin;DING Yangyang;ZHOU Shansheng(College of Computer and Software,Nanjing University of Information Science and Technology,Nanjing 210044,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第5期161-168,共8页 Computer Engineering
基金 国家重点研发计划(2017YFC1502104) 江苏省自然科学基金(BK20151458)
关键词 基于分解的多目标进化算法 邻域更新能力 进化状态 判断机制 自适应邻域策略 Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) neighborhood updating capability evolutionary state judgment mechanism Adaptive Neighborhood Strategy(ANS)
  • 相关文献

参考文献2

二级参考文献21

  • 1VENSKE S M, GONCALVES R A, DELGADO M R. ADEMO/D: multi-objective optimization by an adaptive differential evolution al- gorithm [J]. Neurocomputing, 2014, 127(3): 65 - 77.
  • 2DEB K. Multi-objective Optimization Using Evolutionary Algo- rithms [M]. Chichester: John Wiley & Sons, 2001.
  • 3ZHANG Q, LI H. MOEA/D: a multi-objective evolutionary algo- rithm based on decomposition [J]. IEEE Transactions on Evolution- ary Computation, 2007, 11(6): 712-731.
  • 4ZHAO S Z, SUGANTHAN P N, ZHANG Q. Decomposition-based multi-objective evolutionary algorithm with an ensemble of neigh- borhood sizes [J]. IEEE Transactions on Evolutionary Computation, 2012, 16(3): 442 - 446.
  • 5CHIOU J E CHANG C F, SU C T. Variable scaling hybrid differ- ential evolution for solving network reconfiguration of distribution systems [J]. IEEE Transactions on Power Systems, 2005, 20(2): 668 - 674.
  • 6ADEYEMO J, OTIENO E Differential evolution algorithm for solv- ing multi-objective crop planning model [J]. Agricultural Water Man- agement, 2010, 97(6): 848 - 856.
  • 7BABU B V, CHAKOLE P G, MUBEEN S J H. Multi-objective dif- ferential evolution (MODE) for optimization of adiabatic styrene re- actor [J]. Chemical Engineering Science, 2005, 60(17): 4822 - 4837.
  • 8BABU B V, ANGIRA R. Modified differential evolution (MDE) for optimization of non-linear chemical processes [J]. Computers & Chemical Engineering, 2006, 30(6): 989 - 1002.
  • 9PRICE K, STORN R, LAMPINEN J. Differential Evolution-A Prac- tical Approach to Global Optimization [M]. Berlin: Springer, 2005.
  • 10FAN H Y, LAMPINEN J. A trigonometric mutation operation to dif- ferential evolution [J]. Journal of Global Optim&ation, 2003, 27(1): 105 - 129.

共引文献11

同被引文献18

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部