期刊文献+

基于OpenCV组合优化的人脸识别应用平台设计 被引量:13

Design of Face Recognition Application Platform Based on OpenCV Combination Optimization
下载PDF
导出
摘要 人脸识别是最符合人的本能且便捷的识别认证方式,在人工智能领域广泛应用,多数的人脸识别的算法很容易受到外界因素的影响,或者要求识别者站在某一固定位置,识别缓慢和准确率不高。本设计实现了一种基于Open CV的人脸识别的应用平台,首先对人的脸部图像进行采集和预处理,通过对算法优化,利用平台的Eigenfaces、Fisherfaces和LBP(local binary patterns histograms)三种用于人脸识别的算法协同多重使用,并在判定人脸识别系统识别到待检测目标的同时再加上限制条件,再结合Qt框架搭建用户界面,实现人脸模块训练和人脸识别的功能。经过测试,系统界面友好,运行稳定,对人脸位置和环境光照变化具有较好鲁棒性,能快速和准确地对人脸实时检测和识别。 Face recognition is the most instinctive and convenient way of recognition and authentication.It is widely used in the field of artificial intelligence.Most face recognition algorithms are easily affected by external factors,or require the recognizer to stand in a fixed position,and the recognition rate is slow and low.An application platform for face recognition based on OpenCV is designed and implemented.Firstly,human face image is collected and preprocessed.Through optimization of the algorithm,three algorithms for face recognition,eigenfaces,fisherfaces and local binary patterns histograms are used in collaboration and multiplexing.At the same time,restrictions are added to determine the target to be detected in face recognition system,and Qt is combined.The framework builds user interface,realizes the function of face module training and face recognition.After testing,the system has friendly interface,stable operation,good robustness to face location and environmental illumination changes,can quickly and accurately recognize face in real time.
作者 漆世钱 QI Shi-qian(Armed Police Marine Police Academy,Ningbo 315801,China)
出处 《科学技术与工程》 北大核心 2019年第13期164-170,共7页 Science Technology and Engineering
基金 国家自然科学基金(61401105) 武警海警学院2018年教学改革项目(KG201812)资助
关键词 人工智能 组合 人脸识别 OPENCV QT artificial intelligence combination face recognition OpenCV Qt
  • 相关文献

参考文献6

二级参考文献51

  • 1陈鹏,钱徽,朱淼良.一种快速高斯粒子滤波算法[J].华中科技大学学报(自然科学版),2008,36(S1):291-294. 被引量:9
  • 2张涛,蔡灿辉.一种改进的Mean Shift实时多人脸跟踪算法[J].计算机应用,2009,29(3):781-784. 被引量:6
  • 3陈鸽,常敏慧.Matlab在信号处理系列课程实验中的应用[J].实验技术与管理,2006,23(11):77-80. 被引量:21
  • 4Hjelmas E,Low BK.Face detection:A survey[J].Computer Vision and Image Understanding,2001,83(3):236-274.
  • 5Yang M H,Kriegman D,Ahuja N.Detecting faces in images:A survey[J].IEEE Trans on PAMI,2002,24(1):34-58.
  • 6Yang G,Huang T S.Human face detection in a complex background[J].Pattern Recognition,1994,27(1):53-63.
  • 7Viola P,Jones M.Rapid object detection using a boosted cascade of simple features[C].Kauai,Hawaii,USA:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2001:511-518.
  • 8Gong Y,Sakauchi M.Detection of regions rnatehing specified chromatic features[J].Computer Vision and Image Understanding,1995,61(2):263-269.
  • 9Yang J,Lu W,Waibe A.Skin-color modeling and adaptation[R].Pittsburgh:CMU-CS,1997.97-146.
  • 10Wu Bo,Ai Haizhou,Huang Chang,et al.Fast rotation invariant multi-view face detection based on real Adaboost[C].Sixth IEEE International Conference,Automatic Face and Gesture Recognition,2004:79-85.

共引文献65

同被引文献116

引证文献13

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部