期刊文献+

基于循环谱算法的雷达电磁环境频谱感知

Radar electromagnetic environment spectrum sensing method based on cyclic spectral algorithm
下载PDF
导出
摘要 近年来,随着雷达应用场景越来越复杂,雷达工作的电磁环境中干扰信号会降低雷达性能,为解决上述问题,文中提出一种基于循环谱(Spectral Correlation Function,简称SCF)算法的雷达电磁环境频谱感知技术。首先介绍了循环谱理论;其次,针对电磁环境干扰信号在循环谱分析时存在交叉项问题,给出一种基于经验模式分解(Empirical Mode Decomposition,简称EMD)改进循环谱的算法;然后,研究了信噪比对该算法的影响;最后,通过仿真实验表明文中提出的改进的循环谱算法可有效用于感知雷达工作的电磁环境。 In recent years,with the radar application scenarios getting more and more complex,jamming signals in the electromagnetic environment of radar reducing radar performance. To solve above problems,a radar electromagnetic environment sensing method based on spectral correlation function( SCF) is discussed. Firstly,the cyclic spectral is introduced. Secondly,aiming at the cross term of the electromagnetic environmental signals when conducting the SCF,an improved SCF based on EMD is presented. Thirdly,the influence of signal-to-noise ratio( SNR) is discussed. Lastly,the simulation results show that this method is highly preferred for radar electromagnetic environment sensing.
作者 张宇 ZHANG Yu(College of Computer and Information,Hohai University,Nanjing 211100,China)
出处 《信息技术》 2019年第5期138-142,共5页 Information Technology
关键词 雷达 循环谱算法 交叉项 经验模式分解 radar pectral correlation function cross term empirical mode decomposition
  • 相关文献

参考文献2

二级参考文献18

  • 1李波,刘勤,李维英.认知无线电技术[J].中兴通讯技术,2006,12(2):10-13. 被引量:12
  • 2Amin S M, Wollenberg B F. Toward a smart grid: power delivery forthe 21 st century [J]. Power and Energy Magazine,IEEE,2005,3(5) : 3 4 -41.
  • 3NIST N. framework and roadmap for Smart Grid interoperabilitystandards [Z]. Release 1 .0 ,Jan. 2010.
  • 4Fan Z, Kulkarni P , Gormus S, et al. Smart grid communications:Overview of research challenges,solutions, and standardization activities[J]. Communications Surveys & Tutorials, IEEE,2013,15(1) : 21 -38.
  • 5Han Ying-hua, Wang Jin-kuan. Cognitive Information communicationNetwork for Smart Grid [C]. 2012 IEEE International Conference on InformationScience and technology. Wuhan : IEEE, 2012 : 847 - 850.
  • 6Yu Rong, Zhang Yan. Cognitive radio based hierarchical CommunicationsInfrastructure for Smart Grid [J]. IEEE Network,2011,25(5) : 6 -14.
  • 7Yehbi Cagri Gungor, Dilan Sahin. Cognitive Radio Networks forSmart Grid Applications : A Promising Technology to OvercomeSpectrum Inefficiency [J] . IEEE Vehicular Technology Magazine,2012, 7(2) : 41 -46.
  • 8Mekkanen M, Yirrankoski R , Elmusrati M, et al. Communicationsystem in smart grid using spectrum sensing techniques [C]// PowerEngineering and Optimization Conference (PEOCO), 2013 IEEE7th International. IEEE,2013: 324 -329.
  • 9Dong Qiu-min, Dusit Niyato. Dynamic Spectrum Access for MeterData Transmission in Smart Grid Analysis of Packet Loss [C].2012 IEEE Wireless Communications and Networking Conference:Mobile and Wireless Networks. Paris: IEEE,2012: 1817 -1822.
  • 10Levorato M,Mitra U. Optimal allocation of heterogeneous smart gridtraffic to heterogeneous networks [C] // Proc. IEEE Smart Grid Commun. Conf.,Brussels,Belgium,Oct. 2011 : 132 - 137.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部