期刊文献+

时空属性关系标签的频繁轨迹模式挖掘 被引量:4

Frequent Trajectory of Pattern Mining with Spatio-Temporal Attribute and Relationship Label
下载PDF
导出
摘要 校园卡技术的广泛应用是高校信息化程度的重要标志,其中学生消费数据隐含了强大的潜在价值,对其进行挖掘具备重大的实用意义。由此,提出一种将校园消费流水数据转换为带有时空属性的消费轨迹树DP-DBSCAN算法和带有关系标签的频繁轨迹挖掘模式FP-TRtree。DP-DBSCAN算法采用时间分块、顺序查询和距离度量,能高效地将数据转换为FP-TRtree带有顺序的频繁一项集,同时无需考虑参数问题,也避免了查询每个数据点最近邻对象的巨大耗时。FP-TRtree模式按顺序添加关系值,支持度降序排序,并对相同轨迹节点间的关系标签不断迭代优化。可视化分析结果表明,该数据转换算法和挖掘模式不但可以发现频繁消费的学生关系轨迹网及孤立人群,而且能定量描述节点间学生的消费亲密程度,同时也减少了数据库扫描次数以及树分支的建立。实验结果不仅符合学生实际消费情况,还能从复杂的消费网络中发现隐含的信息,为院校管理、领导决策提供可参照的依据。 The wide application of campus card technology is an important symbol to measure the informatization degree in colleges. Among them, the students’ consumption data imply a great potential value, and it is a significance to excavate. Motivated by this problem, this paper proposes a method to convert campus streaming data into a consumption trajectory tree DP-DBSCAN algorithm with spatial attribute, and builds FP-TRtree mining model with relationship label. DPDBSCAN algorithm adopts the time block, order query and distance measurement, it can transfer data into FP-TRtree frequent item set with order effectively, ignoring parameters. The FP-TRtree model adds value in sequence, supports descending order, and optimizes the relationship label between the same loci. Visualization analysis demonstrates that the method and model not only find the student relationship track network of frequent consumption and isolated populations,but also make a quantitative description between nodes of students spending intimate degree. At the same time, the method reduces the database scan times and the establishment of the branch of a tree. The experimental results conform to real consumption of students, it can find hidden information from the complex consumption network and provide the basis for school management.
作者 潘晓英 赵倩 赵普 PAN Xiaoying;ZHAO Qian;ZHAO Pu(School of Computer Science & Technology, Xi’an University of Posts and Telecommunications, Xi’an 710121, China;Shaanxi Key Laboratory of Network Data Intelligent Processing, Xi’an University of Posts and Telecommunications,Xi’an 710121, China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第10期83-89,共7页 Computer Engineering and Applications
基金 陕西省教育厅专项科研项目(No.14JK1665) 西安邮电大学研究生创新基金项目(No.114-602080125)
关键词 DP-DBSCAN算法 一卡通数据 关系标签 FP-TRtree模式 可视化 DP-DBSCAN algorithm cartoon data relationship label FP-TRtree mode visualization
  • 相关文献

参考文献3

二级参考文献44

  • 1何世明,沈军.基于BP神经网络的网上学习评价方法[J].微机发展,2004,14(12):26-29. 被引量:2
  • 2刘青宝,侯东风,邓苏,张维明.基于相对密度的增量式聚类算法[J].国防科技大学学报,2006,28(5):73-79. 被引量:13
  • 3杨永斌.数据挖掘技术在教育中的应用研究[J].计算机科学,2006,33(12):284-286. 被引量:58
  • 4Han J W, Kamber M. Data Mining: Concepts and Tech- niques. 2nd ed. San Francisco: Morgan Kaufmann, 2006. 383-384.
  • 5Yasmina S M, Adriano M. Automatic classification of lo- cation contexts with decision trees. In : Proceedings of the Conference on Mobile and Ubiquitous Systems, Guima- raes, Portugal, 2006. 74-88.
  • 6Zhou C Q, Frankowski D, Ludford P, et al. Discovering personally meaningful places: An interactive clustering approach. ACM Trans InfSyst, 2007, 25(3) : 12.
  • 7Ester M, Kriegel H P. A density-based algorithm for dis- covering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Porland, USA, 1996. 226-231.
  • 8Wu F, Gardarin G. Gradual clustering algorithms. In: Proceedings of the 7th International Conference on Data- base Systems for Advanced Applications, Los Alamitos, USA, 2001. 48-55.
  • 9Ester M, Kriegel H P, Sander J, et al. Incremental clus- tering for,mining in a data warehousing environment. In: Proceedings of the 24th International Conference on Very Large Data Bases, New York, USA, 1998. 323-333.
  • 10Bose J H, Andrzejak A, Hogqvist M. Beyond online ag- gregation: parallel and incremental data mining with on- line Map-Reduce. In: Proceedings of the 2010 Workshop on Massive Data Analytics on the Cloud, Raleigh, USA, 2010. 1-6.

共引文献18

同被引文献38

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部