期刊文献+

多模态融合下长时程肺部病灶良恶性预测方法 被引量:1

Benign and Malignant Prediction of Pulmonary Lesions in Long Term Based on Multimodal Fusion
下载PDF
导出
摘要 为了更精确、全面地表征各时期肺部医学影像中病灶特征的变化与发展规律,研究在时间纵向维度上预测肺结节的演变方式,构建了一种多模态特征融合下不同时期肺部病灶良恶性预测模型。根据病人不同时期的序列CT图像,提取肺部病灶的传统特征与深度特征,构造多模态特征;通过神经网络对多模态特征进行相关性快速融合;利用长短时记忆方法学习不同时期具有时间特征的肺部病灶特征向量,构建一个双向长短时记忆网络对病灶进行良恶性预测。实验表明,所提方法准确率为92.8%,比传统方法有所提高,可以实现有效预测。 In order to characterize the changes and development rules of the lesion characteristics in various stages of pulmonary medical images more accurately and comprehensively, and study the evolution of lung nodules in the longitudinal dimension of time, this paper constructs a prediction model of benign and malignant lung lesions at different stages based on multimodal feature fusion. Firstly, according to the CT images of different stages of the patients, extract the traditional features and depth features of lung lesions, and construct the multimodal features. Then multimodal features are fused by two layers of neural networks. Finally, long and short time memory is used to study the feature vectors of lung lesions with different time characteristics. A bidirectional long and short term memory network is constructed to predict the benign and malignant lesions. The experiments show that the accuracy rate of the proposed method is 92.8%, which is higher than that of the traditional methods, and the proposed method can achieve effective prediction.
作者 张娅楠 赵涓涓 赵鑫 张小龙 王三虎 ZHANG Yanan;ZHAO Juanjuan;ZHAO Xin;ZHANG Xiaolong;WANG Sanhu(College of Computer Science and Technology, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China;College of Information Science and Technology, Pennsylvania State University, University Park 16802, USA;Department of Computer Science and Tehnology, Luliang University, Luliang, Shanxi 033000, China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第10期146-153,共8页 Computer Engineering and Applications
基金 国家自然科学基金(No.61572344) 虚拟现实技术与系统国家重点实验室开放基金(No.BUAA-VR-17KF-15 No.BUAAVR-17KF-14) 山西省回国留学人员科研资助项目(No.2016-038)
关键词 肺部病灶 长时程 特征融合 长短时记忆模型 pulmonary lesions long term feature fusion long and short time memory model
  • 相关文献

参考文献2

二级参考文献14

  • 1F. Nakhaei,M.R. Mosavi,A. Sam.Recovery and grade prediction of pilot plant flotation column concentrate by a hybrid neural genetic algorithm[J].International Journal of Mining Science and Technology,2013,23(1):69-77. 被引量:6
  • 2Valenti OE,Erik C,Humberto S. A comparison of nature inspired algorithms for multi-threshold image segmentation[J].{H}Expert systems with application,2013,(4):1213-1219.
  • 3Kang C C,Wang W J,Kang C H. Image segmentation with complicated background by using seeded region growing[J].AEU-Intemational Journal of Electronics and Communications,2012,(9):767-771.
  • 4Hamameh G,Li X. Watershed segmentation using prior shape and appearance knowledge[J].{H}IMAGE AND VISION COMPUTING,2009,(1):59-68.
  • 5Meyer F. The watershed Concept and its use in segmentation:A brief history[Z].arXiv Preprint arXiv:1202.0216,2012.
  • 6Ghassan H,XIAO Xingli. Watershed segmentation using prior shape and appearance knowledge[J].{H}IMAGE AND VISION COMPUTING,2009,(1-2):59-68.
  • 7Alberto B,Ivan D,Silvano A. An automatic method for colon segmentation in CT colonography[J].{H}Computerized Medical Imaging and Graphics,2009,(4):325-331.
  • 8ZHOU Xiangrong,Tatsuro H,Takeshi H. Automatic segmentation and recognition of anatomical lung structures from high-resolution chest CT images[J].{H}Computerized Medical Imaging and Graphics,2006,(5):299-313.
  • 9PU Jiantao,Justus R,Chin AY. Adaptive border marching algorithm:Automatic lung segmentation on chest CT images[J].{H}Computerized Medical Imaging and Graphics,2008,(6):452-462.
  • 10Yeny Y,Helen H,Joon B S. Correction of lung boundary using t he gradient and intensity distribution[J].{H}Computers in Biology and Medicine,2009,(3):239-250.

共引文献22

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部