期刊文献+

基于Spark的CT图像FBP重建算法程序并行设计 被引量:4

Parallel Design of FBP Reconstruction Algorithm for CT Image Based on Spark
下载PDF
导出
摘要 将常用于CT图像重建的滤波反投影算法程序设计成能够运行在大数据框架Spark中的并行模式,以此来提高计算效率并实现批量图像的重建,缩短图像重建时间。基于分布式计算框架Spark,利用其图像处理工具Thunder,将滤波反投影算法在图像重建过程中设计成并行程序模式,实现图像的片间并行重建。实验结果表明,随着Spark集群规模的不断扩大,在确保重建图像质量的前提下,重建一定数量的CT图像相比单机模式下时间显著缩短,并行滤波反投影算法具有完全加速比,并行效率趋近于1。基于Spark集群实现的滤波反投影算法能够显著提升CT图像重建速度,并实现大量图像并行重建,可扩展其他的CT图像重建算法,对远程医学图像重建平台的建设具有重要参考意义。 To design a filtered back projection algorithm, which is often used in CT image reconstruction and can run in the parallel mode of the big data framework Spark, so as to improve the computational efficiency of the algorithm and realize the reconstruction of batch images and shorten the image reconstruction time. Based on the distributed computing framework Spark, the image processing tool Thunder is used to design the filtered back projection algorithm into a parallel program mode in the image reconstruction process. Experiments show that with the continuous expansion of the Spark cluster size, under the premise of ensuring the quality of reconstructed images, the reconstruction of a certain number of CT images is significantly shorter compared to the stand-alone mode, and the parallel filtered back projection algorithm has almost complete speedup. The filtered back projection algorithm based on Spark cluster can significantly improve the CT image reconstruction speed and achieve a large number of parallel image reconstructions. It can expand other CT image reconstruction algorithms, and has important reference significance for the construction of remote medical image reconstruction platform.
作者 曾有灵 陈耿铎 熊威 李喆 ZENG Youling;CHEN Gengduo;XIONG Wei;LI Zhe(School of Biomedical Enginnering, Southern Medical University, Guangzhou 510515, China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第10期218-224,共7页 Computer Engineering and Applications
基金 国家自然科学联合基金重点项目(No.U1708261)
关键词 CT图像重建 滤波反投影 SPARK 并行计算 THUNDER CT image reconstruction filtered back projection Spark parallel computing Thunder
  • 相关文献

参考文献5

二级参考文献22

  • 1李俊照,罗家融.基于linux集群的并行计算[J].计算机测量与控制,2004,12(11):1064-1066. 被引量:14
  • 2李翀,罗家融,王华忠.基于BEOWULF的PC集群系统设计及并行编程的研究[J].微计算机信息,2005,21(08X):64-67. 被引量:14
  • 3杨少春.采用VMware构建虚拟并行计算网[J].计算机工程与设计,2006,27(14):2546-2547. 被引量:20
  • 4王宗皓,1993年
  • 5颜宏,高原气象,1987年,6卷,7期,1页
  • 6都志辉.高性能计算之并行编程技术-MPI程序设计[M].清华大学出敝社,2001..
  • 7David A Reimann.Cone Beam Tomography using MPI on Heterogeneous Workstation Clusters[C].In:MPI Developers Conference and Users,Group Meeting, 1996.
  • 8Dongarra J,Foster I,等编著,莫则尧,陈军,等译.并行计算综论[M].北京:电子工业出版社,2005.3-28.
  • 9谢希仁.计算机网络[M].大连:大连理工大学出版社,2005:308-310.
  • 10张晨曦.计算机体系结构教程[M].北京:清华大学出版社,2009:12-15.

共引文献23

同被引文献32

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部