期刊文献+

基于递归卷积神经网络的移动机器人定位算法 被引量:5

Recurrent Convolutional Neural Networks-Based Mobile Robot Localization Algorithm
下载PDF
导出
摘要 移动机器人定位已成为机器人研究的重要任务。提出基于递归卷积神经网络的移动机器人定位(Recurrent Convolutional Neural Networks-Based Mobile Robot Localization,RCNN-MRL)算法。递归卷积神经网络(Recurrent Convolutional Neural Networks,RCNN)结合卷积神经网络(Convolutional Neural Networks,CNN)和递归神经网络(Recurrent Neural Networks,RNN)的特性,并依据机器人上嵌入的照相机拍摄的第一人称视角图像,RCNN-MRL算法利用RCNN实现自主定位。具体而言,先通过RCNN有效地处理多个连续图像,再利用RCNN作为回归模型,进而估计机器人位置。同时,设计双轮机器人移动,获取多个时间序列图像信息。最后,依据双轮机器人随机移动建立仿真环境,分析机器人定位性能。实验数据表明,提出的RCNN模型能够实现自主定位。 Mobile robot localization has been considered to be an important task in the ?eld of robotics research. This paper proposes Recurrent Convolutional Neural Networks-Based Mobile Robot Localization(RCNN-MRL)algorithm.RCNN(Recurrent Convolutional Neural Networks)is a neural networks model that combines Convolutional Neural Networks(CNN)and Recurrent Neural Networks(RNN), and RCNN-MRL estimates the self-position from the first person view captured by a camera on a robot by using RCNN. Specifically, it uses a regression model for localization by using RCNN capable of processing consecutive images. This paper uses simulated environments where a two-wheel robot moves randomly, and analyzes the performance of localization. The experiments show that RCNN model can estimate the self-position of the robot.
作者 李少伟 王胜正 LI Shaowei;WANG Shengzheng(Faculty of Computer Science and Technology, School of Mathematics and Computer Science, Jianghan University, Wuhan430056, China;Faculty of Navigation, Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第10期240-243,249,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.51379121 No.61304230) 上海市曙光人才计划项目(No.15SG44)
关键词 移动机器人定位 第一人称视角 时间序列图像 递归卷积神经网络 双轮机器人 mobile robot localization first person view time series image convolutional neural networks two-wheel robot
  • 相关文献

参考文献3

二级参考文献39

  • 1刘鹏,张岩,毛志刚.一种脉冲噪声图像复原算法[J].计算机研究与发展,2006,43(11):1939-1946. 被引量:4
  • 2Ivanov V K. On linear ill-posed problems [J]. Dokl Akad Nauk SSSR, 1962, 14(145): 270-272.
  • 3Phillips D L. A technique for the numerical solution of certain integral equations of the first kind [J]. Journal of the ACM, 1962, 9(1): 84-97.
  • 4Tikhonov A N. On the Solution of Ill-posed Problems and the Method of Regularization [M]. Providence: American Mathematical Society Press, 1963:1035-1038.
  • 5Pace D, Aylward S, NJethammer M. A locally adaptive regularization based on anisotropie diffusion for deformable image registration of sliding organs [J]. IEEE Trans on Medical Imaging, 2013, 32(11): 2114-2126.
  • 6Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D: Nonlinear Phenomena, 1992, 80(1): 259-268.
  • 7Marquina A, Osher S. Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal [J]. SIAM Journal of Scientific Computing, 2000, 2(22): 387-405.
  • 8Levin A, Fergus R, Durand F, et al. Image and depth from a conventional camera with a coded aperture [J]. ACM Trans on Graphics, 2007, 26(3): 701-709.
  • 9Levin A. Blind motion deblurring using image statistics [C] //Proc of the 20th Annual Conf on Neural Information Processing Systems. Cambridge, CM: MIT, 2006:841-848.
  • 10Shah Q, Jia J, Agarwala A. High-quality motion deblurring from a single image [J]. ACM Trans on Graphics, 2008, 27 (3) : 73-83.

共引文献1809

同被引文献35

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部