期刊文献+

Volterra型算子在对数加权Banach空间之间的有界性和紧性 被引量:5

The Boundedness and Compactness of Volterra Type Operators Between Logarithm-Weighted Banach Spaces
下载PDF
导出
摘要 Smith等人近年来给出了当符号函数为单叶函数时,Volterra型算子在有界解析函数Banach空间上的有界性的充要条件.本文在其基础上,刻画了Volterra型算子T_g在对数加权Banach空间之间的有界性和紧性的充要条件,从而扩展了他们的成果.最后提出一些未解问题. Smith et al. recently gave the sufficient and necessary conditions for the boundedness of Volterra type operators on Banach spaces of bounded analytic functions when the symbol functions are univalent. In this paper, following their ideas,we characterize the conditions for the boundedness and compactness of Volterra type operators T_g between logarithm-weighted Banach spaces of analytic functions, which extend their works. Finally, some unsolved problems are posed.
作者 林庆泽 LIN Qingze(School of Applied Mathematics,Guangdong University of Technology,Guangzhou 510520,China)
出处 《应用泛函分析学报》 2019年第1期66-75,共10页 Acta Analysis Functionalis Applicata
关键词 Volterra型算子 有界性 紧性 对数加权Banach空间 Volterra type operator boundedness compactness logarithm-weighted Banach space
  • 相关文献

参考文献1

二级参考文献2

共引文献5

同被引文献7

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部