期刊文献+

关于ss-拟正规子群和c-正规子群 被引量:1

On ss-quassinormal subgroups and c-normal subgroups
下载PDF
导出
摘要 设G是有限群,H是G的子群.称H在G中ss-拟正规,如果H存在1个补子群B,满足H和B的每个Sylow子群可以交换.称H在G中c-正规,如果存在G的正规子群K,使得G=HK且H∩K≤H_G,这里H_G是H在G中的正规核.同时考虑这2个概念,并应用群论研究的"或"思想方法,得出的主要结论是:当p是满足|G|的素因子且■是G的1个Sylow p-子群,如果P的极大子群在G中c-正规,或在G中ss-拟正规时,群G是p-幂零群. Let G be a finite group, H is a subgroup of G . A subgroup H is said to be an ss-quassinormal subgroup of G , if there is a supplement B of H to G such that H permutes with every Sylow subgroup of B . However, A subgroup H of G is called c-normal in G provided that there exists a normal subgroup K such as G=HK and H∩K≤H G, where H G is the normal core of H in G . The two concepts are considered in a group at the same time, and we apply the “or” method of group theory to the research. It concludes as follows: suppose p a prime dividing |G| with (|G|,p-1)=1 and let P be a Sylow p -subgroup of a group G , and if every maximal subgroup of P is either ss -quassinormal or c -normal, then G is p -nilpotent.
作者 程丹 徐颖吾 CHENG Dan;XU Ying-wu(School of Science, Xi′an Polytechnic University, Xi′an 710048, China)
出处 《云南民族大学学报(自然科学版)》 CAS 2019年第3期251-253,共3页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 陕西省自然科学基础研究计划项目(2017JQ1029)
关键词 有限群 SYLOW子群 极大子群 ss-拟正规子群 C-正规子群 P-幂零 finite group subgroup maximal subgroup ss -quasinormal subgroup c -quasinormal subgroup p -nilpotent
  • 相关文献

参考文献2

二级参考文献22

  • 1孟伟,娄本功,卢家宽.具有4p^2q阶自同构群的有限幂零群[J].云南大学学报(自然科学版),2009,31(S2):327-329. 被引量:3
  • 2李世荣.具有p^2q^2阶自同构群的有限群[J].广西大学学报(自然科学版),1996,21(2):95-97. 被引量:4
  • 3Asaad, M., On maximal subgroups of finite group, Comm. Algebra; 1998, 26(11): 3647-3652.
  • 4Assad, M., Ramadan, M. and Shaalan A., The influence of π-quasinormality of maximal subgroups of Sylow subgroups of Fitting subgroups of a finite group, Arch. Math., 1991, 56:521-527
  • 5Ballester-Bolinches, A., Wang Y. and Guo X., c-supplemented subgroups of finite groups, Glasgow Math. J., 2000, 42: 383-389.
  • 6Guo X. , Shum, K.P., On p-nilpotency of finite groups with some subgroups c-supplemented, Algebra Colloquium, 2003, 10(3): 259-266.
  • 7Huppert, B., Endliche Gruppen I, Berlin: Springer-Verlag, 1968, 1-500.
  • 8Huppert, B., Blackburn, N., Finite Groups Ⅲ, Berlin, New York: Springer-Verlag, 1982, 1-500.
  • 9Kegel, O., Sylow-Gruppen und aubnormalteiler endlicher Gruppen, Math. Z., 1962, 78: 205-221.
  • 10Li Y., Some note on the minimal subgroups of Fitting subgroupof finite groups, J. Pure Applied Algebra, 2002, 171: 289-294.

共引文献7

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部