期刊文献+

基于中轴线的曲面网格质量优化 被引量:2

Surface Mesh Quality Improvement Based on Medial Axis
原文传递
导出
摘要 网格质量对数值模拟的精度和效率有着重要影响,为了提升曲面网格质量,提出一种基于中轴线的曲面网格质量优化算法,由几何特征保持和节点光顺操作组成。采用法向张量投票理论对网格节点进行分类,保证了原始网格的几何特征。节点光顺操作通过不断的调整节点位置来提升网格质量,直到网格质量的变化量小于给定的阈值。针对光滑节点,釆用二分法求解邻域多边形中轴上的最优中心点,并将该最优中心点投影回三维网格上,折痕点的最优位置则通过二次多项式插值法求得。应用实例表明,该方法在保证网格几何特征的基础上,较为明显地提升了曲面网格的质量。 Mesh quality plays an important role in the accuracy and efficiency of numerical simulation. In order to improve the quality of surface mesh, a mesh quality improvement algorithm based on medial axis is proposed, which is composed of geometric feature preservation and node smoothing operations. The normal tensor voting theory is used to classify the surface nodes, which can accurately preserve the geometric features of the original mesh. The node smooth operation improves the mesh quality by constantly adjusting the node position until the change of the mesh quality is less than the given threshold. For smoothing node, the optimal point on the medial axis of the surrounding polygon is obtained by dichotomy, and map the optimal point to original surface mesh, while the optimal location of the crease point is obtained by quadratic polynomial interpolation method. The application examples show that the method can improve the quality of the surface mesh on the basis of ensuring the geometric features of the original mesh.
作者 彭威 吉卫喜 PENG Wei;JI Weixi(School of Mechanical Engineering, Jiangnan University, Wuxi 214122;Jiangsu Key laboratory of Advanced Food Manufacturing Equipment and Technology, Wuxi 214122)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2019年第7期155-162,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金(11402264) 中央高校基本科研业务费专项资金(JUSRP116026,JUSRP51732B)资助项目
关键词 曲面网格 网格质量 网格光顺 中轴线 surface mesh mesh quality mesh smoothing medial axis
  • 相关文献

参考文献2

二级参考文献23

  • 1陈涛,李光耀,钟志华.基于散乱点的全自动四边形网格剖分方法[J].中国机械工程,2007,18(3):308-312. 被引量:1
  • 2Owen S J. A Survey of Unstructured Mesh Generation Technology[C]//Proc. of 7th International Meshing Roundtable. Dearborn, Michigan: Sandia National Laboratories, 1998: 239-267.
  • 3Zhu J Z, Zienkiewicz O C, Hinton E, et al. A New Approach to the Development of Automatic Quadrilateral Mesh Generation [J]. International Journal for Numerical Methods in Engineering, 1991, 32 (4) : 849-866.
  • 4Blaker T D, Mark S S. Paving: a New Approach to Automated Quadrilateral Mesh Generation[J]. International Journal for Numerical Methods in Engineering, 1991, 32(4): 811-847.
  • 5Bechet E, Cuilliere J C, Trochu F. Generation of a Finite Element Mesh from Stereolithography (STL) Files[J]. Computer- aided Design, 2002, 34(1) : 1-17.
  • 6Schneiders R. Refining Quadrilateral and Hexahedral Element Meshes [C]// Proceedings of 5th International Conference on Numerical Grid Generation in Computational Field Simulations. Hattiesburg: Mississippi State University, 1996: 679- 688.
  • 7Herrman L R. Laplacian - isoparametric Grid Generation Scheme[J]. Journal of Engineering Mechanics, 1976, 102(5): 749-756.
  • 8Canann S A, I.iu Y C, Mobley A V. Automated 3D Surface Meshing to Address Today's Industrial Needs[J]. Finite Elements in Analysis and Design, 1997, 25(1/2):185-198.
  • 9Canann S A, Joseph R T, Mathew L S. An Approach to Combined Laplacian and Optimization- based Smoothing for Triangular, Quadrilateral, and Quad-dominant Meshes [C]//Proc. of 7th International Meshing Roundtable. Dearborn, Michigan: Sandia National Laboratories, 1998 : 479 -494.
  • 10Jones R E. The QMESH Mesh Generation Package [C]// Proceedings of the SIGNUM Meeting on Software for Partial Differential Equations. Moffitt Field, California, 1975:31-34.

共引文献5

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部