摘要
在FI-格上引入了导子,研究了FI-格上导子的性质,给出了导子的等价刻画。定义并研究了保序、幂等导子,并讨论了保序导子与闭包算子之间的关系。给出了FI-格上导子不动点之集的概念,证明了可换FI-格上的保序导子的不动点之集为格滤子,并给出FI-格上导子不动点之集的等价刻画。这些结果推广和丰富了基于剩余格的逻辑代数上的导子理论。
The derivations on FI-lattices are introduced and their properties are investigated. The isotone and idempotent derivations are characterized and,the relations between these derivations and closure operator are discussed. The fixed point set of derivation on FI-lattices are introduced and investigated. Especially,the fact that the fixed point set of derivation on commutative FI-lattices is a lattice filter is proved. This results enrich the derivations theory on logic algebras that based on fuzzy implicative.
作者
王伟
王梅
王军涛
WANG Wei;WANG Mei;WANG Jun-tao(Department of Basic Courses,Shaanxi Railway Institute,Weinan 714000,China;School of Mathematics and Physics.Weinan Normal University,Weinan 714099,China;School of Mathematical,Xi'an Shiyou University,Xi'an 710065,China)
出处
《模糊系统与数学》
北大核心
2019年第2期11-18,共8页
Fuzzy Systems and Mathematics
基金
国家自然科学基金资助项目(11571281)
陕西铁路工程职业技术学院科研基金资助项目(Ky2017-093)
关键词
FI-格
导子
格滤子
不动点之集
FI-lattice
Derivation
Lattice Filter
The Fixed Point set