期刊文献+

基于机器学习的设备剩余寿命预测方法综述 被引量:145

Review of Machine Learning Based Remaining Useful Life Prediction Methods for Equipment
原文传递
导出
摘要 随着科学技术的发展和生产工艺的进步,当代设备日益朝着大型化、复杂化、自动化以及智能化方向发展。为保障设备安全性与可靠性,剩余寿命(Remaining useful life,RUL)预测技术受到了普遍关注,同时得到了广泛应用。传统的统计数据驱动方法受模型的选择影响明显,而机器学习具有强大的数据处理能力,并且无需确切的物理模型和专家先验知识,因而机器学习在剩余寿命预测领域表现出了广阔的应用前景。鉴于此,详细分析和阐述了基于机器学习的设备剩余寿命预测方法。根据机器学习模型结构的深度,将其分为基于浅层机器学习的方法和基于深度学习的方法。同时疏理了每类方法的发展分支与研究现状,并且总结了相应的优势和缺点,最后探讨了基于机器学习的剩余寿命预测方法的未来研究方向。 With the development of science and technology as well as the advancement of production technology, contemporary equipment is increasingly developing towards large-scale, complex, automated and intelligent direction. In order to ensure the safety and reliability of equipment, the remaining useful life (RUL) prediction technology has received widespread attention and been widely used. Traditional statistical data-driven methods are obviously influenced by the choice of models. Machine learning has powerful data processing ability, and does not need exact physical models and prior knowledge of experts. Therefore, machine learning has a broad application prospect in the field of RUL prediction. In view of this, the RUL prediction methods based on machine learning are analyzed and expounded in detail. According to the depth of machine learning model structure, it is divided into shallow machine learning methods and deep learning methods. At the same time, the development branches and research status of each method are sorted out, and the corresponding advantages and disadvantages are summarized. Finally, the future research directions of RUL prediction methods based on machine learning are discussed.
作者 裴洪 胡昌华 司小胜 张建勋 庞哲楠 张鹏 PEI Hong;HU Changhua;SI Xiaosheng;ZHANG Jianxun;PANG Zhenan;ZHANG Peng(College of Missile Engineering, Rocket Force University of Engineering, Xi'an 710025)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2019年第8期1-13,共13页 Journal of Mechanical Engineering
基金 国家自然科学基金(61833016 61573365 61773386 61603398 61374126 61473094) 中国科协青年人才托举工程(2016QNRC001)资助项目
关键词 剩余寿命预测 机器学习 神经网络 支持向量机 深度学习 remaining useful life prediction machine learning neural network support vector machine deep learning
  • 相关文献

参考文献8

二级参考文献97

  • 1李晓阳,姜同敏.加速寿命试验中多应力加速模型综述[J].系统工程与电子技术,2007,29(5):828-831. 被引量:68
  • 2Nelson W. Accelerated testing: statistical models, test plans, and data analyses[M]. New York: John Wiley Sons, 1990: 71-107.
  • 3Fallou B, Buruiere C, Morel J F. First approach on multiplestress accelerated life testing of electrical insulation[C]//NRC Conference on Electrical Insulation and Dielectric Phenomena in Pocono. 1979: 621-628.
  • 4Simoni L, Mazzanti G. A general multi-stress life model for insulating materials with or without evidence for thresholds [J]. IEEE Transactions on Electrical Insulation, 1993, 16(3): 349-364.
  • 5Cygan P, Laghari J R. A review of electrical and thermal multistressaging models [C]//Conference Record of the 1990 IEEE International Symposium on Electrical Insulation. 1990:15-20.
  • 6Montanari G C, Caeciari M. A probabilistic life model for insula-ting materials showing electrical threshold[ J ]. IEEE Transactions on Electrical Insulation, 1989, 24(1) : 127-137.
  • 7Stewart P D. Comprehensive model for humidity testing correlation[C] // Proceedings of 24th Annual Reliability Physics Symposium. 1986: 44- 50.
  • 8Barker D B, Abhijit D, Pecht M G. PWB solder joint life calculations under thermal and vibrational loading [ J ]. Journal of the IES, 1992, 35(1): 17-25.
  • 9Srinivas M B,Ramu T S. Multifactor aging of HV generatorstator insulation including mechanical vibration [J]. IEEE Transactions on Electrical Insulation, 1992, 27(5) 1009-1021.
  • 10Feilat E A,Knight G S P. Multiple stress aging of magnet wire by high frequency voltage pulse and high temperature [C] // Conference Record of the 2000 IEEE International Symposium on Electrical Insulation. 2000:15- 20.

共引文献482

同被引文献1302

引证文献145

二级引证文献760

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部