期刊文献+

基于谱峭度分析和粒子群Kmeans算法的高压断路器故障诊断研究 被引量:13

Study on Fault Diagnosis of High Voltage Circirt Breaker Based on Spectral Kurtosis Analysis and Particle Swarm Optimization Kmeans Clustering Algorithm
下载PDF
导出
摘要 为满足电网对高压断路器高效诊断要求,提出一种谱峭度分析和粒子群K均值算法(PSO-Kmeans)相结合的故障诊断方法。该方法首先对正常状态和故障状态振动信号进行快速Kurtogram谱峭度分析,得到谱峭度指标最大中心频率和相应频率分辨率,据此设计带通滤波器对信号进行去噪;对去噪后的信号进行小波分解,提取小波包能量熵作为特征量;进一步采用PSO-Kmeans对特征量进行聚类分析。实验结果表明:改进谱峭度分析法弥补了传统带通滤波器参数确定的不足,提升去噪效果;去噪与PSO-Kmeans算法相结合的诊断方法克服了传统Kmeans易受初始聚类中心影响的缺点,聚类效果良好且精度高于传统算法,证实该方法适用于高精度高压断路器机械故障诊断。 In order to meet the power grid requirement of high precision circuit breaker fault diagnosis, an improved spectral kurtosis analysis combined with PSO Kmeans algorithm is proposed. Firstly, the Kurtogram spectrum analysis is performed for normal and fault vibration signals, the central and the corresponding frequencies are obtained, the band pass filter is designed;The de-noising signal is decomposed by wavelet, the wavelet packet energy entropy is extracted;PS0-Kmeans is used to cluster the feature quantity. It is proved that, the effectiveness of designed filter is verified;The employed PSO-Kmeans algorithm overcomes the shortcoming of traditional Kmeans, achieves good clustering results and improves the accuracy of fault diagnosis. The method is suitable for high-precision mechanical fault diagnosis of high voltage circuit breaker.
作者 王庆燕 曹生让 陈秉岩 杨忠 WANG Qingyan;CAO Shengrang;CHEN Bingyan;YANG Zhong(Jinling Institute of Technology Electrical Engineering, Nanjing 211169, China;College of Automation Engineering Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China)
出处 《高压电器》 CAS CSCD 北大核心 2019年第5期23-28,34,共7页 High Voltage Apparatus
基金 江苏省高校自然科学基金(17KJB470005) 博士科研启动基金(jit-B-201626)~~
关键词 机械故障诊断 高压断路器 谱峭度 Kurtogram算法 粒子群算法 mechanical fault identification high voltage circuit breaker spectral kurtosis Kurtogram algorithm particle swarm optimization algorithm
  • 相关文献

参考文献18

二级参考文献187

共引文献467

同被引文献192

引证文献13

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部