摘要
Chemical inhomogeneity of chemical vapor deposition(CVD) grown graphene compromises its usage in highperformance devices. In this study, TOPSIS based Taguchi optimization was performed to improve thickness uniformity and defect density of CVD grown graphene. 1.56% decrease in the mean 2 D/G intensity ratio, 87.96% improvement in the mean D/G intensity ratio, 56.07% improvement in the standard deviation D/G intensity ratio, 25.21%improvement in the standard deviation 2 D/G intensity ratio, and 69.32% improvement in the surface roughness were achieved with TOPSIS based Taguchi optimization. The statistical differences between the copper and silicon substrates have been found significantly in terms of their impacts on the graphene's properties with the0.000 p-value for the mean D/G intensity ratio and with the 0.009 p-value for the mean 2 D/G intensity ratio, respectively. Graphene having 11% lower mean D/G intensity ratio(low defective graphene products) compared to the values given in the literature using single-response optimization was obtained using multi-response optimization.
Chemical inhomogeneity of chemical vapor deposition(CVD) grown graphene compromises its usage in highperformance devices. In this study, TOPSIS based Taguchi optimization was performed to improve thickness uniformity and defect density of CVD grown graphene. 1.56% decrease in the mean 2 D/G intensity ratio, 87.96% improvement in the mean D/G intensity ratio, 56.07% improvement in the standard deviation D/G intensity ratio, 25.21%improvement in the standard deviation 2 D/G intensity ratio, and 69.32% improvement in the surface roughness were achieved with TOPSIS based Taguchi optimization. The statistical differences between the copper and silicon substrates have been found significantly in terms of their impacts on the graphene's properties with the0.000 p-value for the mean D/G intensity ratio and with the 0.009 p-value for the mean 2 D/G intensity ratio, respectively. Graphene having 11% lower mean D/G intensity ratio(low defective graphene products) compared to the values given in the literature using single-response optimization was obtained using multi-response optimization.
基金
Supported by the Scientific Research Project of Cankiri Karatekin University(MF200217B05)
the Scientific Research Project Management Unit of Cankiri Karatekin University(CAKü-BAP)