摘要
High-brightness fiber laser sources usually utilize active rare-earth-doped fibers cladding-pumped by multimode laser diodes(LDs), but they operate in limited wavelength ranges. Singlemode-passive-fiber based Raman lasers are able to operate at almost any wavelength being pumped by high-power fiber lasers. One of the interesting possibilities is to directly pump graded-index(GRIN) multimode passive fibers by available high-power multimode LDs at 915–940 nm,thus achieving high-power Raman lasing in the wavelength range of 950–1000 nm, which is problematic for rare-earthdoped fiber lasers. Here we review the latest results on the development of all-fiber high-brightness LD-pumped sources based on GRIN fiber with in-fiber Bragg gratings(FBGs). The mode-selection properties of FBGs inscribed by fs pulses supported by the Raman clean-up effect result in efficient conversion of multimode pump into a high-quality output beam at 9 xx nm. GRIN fibers with core diameters 62.5, 85 and 100 μm are compared. Further scaling capabilities and potential applications of such sources are discussed.
High-brightness fiber laser sources usually utilize active rare-earth-doped fibers cladding-pumped by multimode laser diodes(LDs), but they operate in limited wavelength ranges. Singlemode-passive-fiber based Raman lasers are able to operate at almost any wavelength being pumped by high-power fiber lasers. One of the interesting possibilities is to directly pump graded-index(GRIN) multimode passive fibers by available high-power multimode LDs at 915–940 nm,thus achieving high-power Raman lasing in the wavelength range of 950–1000 nm, which is problematic for rare-earthdoped fiber lasers. Here we review the latest results on the development of all-fiber high-brightness LD-pumped sources based on GRIN fiber with in-fiber Bragg gratings(FBGs). The mode-selection properties of FBGs inscribed by fs pulses supported by the Raman clean-up effect result in efficient conversion of multimode pump into a high-quality output beam at 9 xx nm. GRIN fibers with core diameters 62.5, 85 and 100 μm are compared. Further scaling capabilities and potential applications of such sources are discussed.
基金
financial support of Russian Science Foundation(grant 14-22-00118)