摘要
为了获得更优算法,将加入混合核的极限学习机算法应用于多标签学习中。首先在极限学习机算法中通过混合核函数将特征映射到高维空间,然后对原标签空间建立混合核极限学习机模型求得输出权值,最后通过模型计算预测未知样本的标签情况。
In order to obtain a better algorithm,the extreme learning machine algorithm that joins the mixed kernel is applied to multi-label learning.Firstly,the feature is mapped to the high-dimensional space by the mixed kernel function in the extreme learning machine algorithm.Then,the hybrid kernel extreme learning machine model is used to obtain the output weight of the original label space.Finally,the model is used to predict the label of the unknown sample.
作者
钱萌
唐家康
QIAN Meng;TANG Jiakang(School of Computer and Information,Anqing Normal University,Anqing Anhui 246133,China;Key Laboratory of Intelligent Perception and Computing of Anhui Province,Anqing Anhui 246133,China)
出处
《重庆科技学院学报(自然科学版)》
CAS
2019年第2期79-85,共7页
Journal of Chongqing University of Science and Technology:Natural Sciences Edition
基金
2017年度安徽省高校自然科学研究重点项目"室内机器人分层SLAM研究"(KJ2017A354)
关键词
多标签学习
极限学习机
混合核函数
回归拟合
multi-label learning
extreme learning machine
mixed kernel function
regression fitting