摘要
引入寻找两族非扩张半群、广义变分不等式和混合平衡问题公共解的粘滞Cesàro平均迭代算法,使用这种粘滞迭代算法,在Hilbert空间中建立了两族非扩张半群对的公共不动点集与具有α-逆强g单调映象的广义变分不等式解集以及混合平衡问题的公共解粘滞Cesàro平均迭代算法的强收敛定理,推广和改进了相关结果.
We introduce a more general viscosity Cesàro mean iterative algorithms for finding a common solution of fixed point problems for nonexpansive semigroup pairs,the set of solutions for generalized variational inequalities withα-inverse strongly g-monotone mapping and the set of solutions for mixed equilibrium problems in Hilbert spaces.The strong convergence theorems of viscosity Cesàro mean iterative algorithms to find a common solution of fixed point problems for nonexpansive semigroup pairs,the set of solutions for generalized variational inequalities withα-inverse strongly g-monotone mapping and the set of solutions for mixed equilibrium problems is established in Hilbert spaces.The corresponding results in some references were extended and improved.
作者
张树义
张芯语
聂辉
Zhang Shuyi;Zhang Xinyu;Nie Hui(College of Mathematics and Physics,Bohai University,Jinzhou 121013,China)
出处
《北华大学学报(自然科学版)》
CAS
2019年第3期281-291,共11页
Journal of Beihua University(Natural Science)
基金
国家自然科学基金项目(11371070)
渤海大学研究生创新基金(YJC20170036)
关键词
非扩张半群对
广义变分不等式
混合平衡问题
粘滞Cesàro平均迭代算法
α-逆强g单调
nonexpansive semigroup pairs
generalized variational inequalities
mixed equilibrium problems
viscosity Cesàromean iterative algorithms
α-inverse strongly g-monotone mapping