期刊文献+

氧化铈纳米杆的制备及静力学分析

Preparation and Static Analysis of Cerium Oxide Nanorods
下载PDF
导出
摘要 在低温水热条件下,使用不同量的醋酸锌封端剂Zn(CH_3COO)_2进行水热制备出不同尺寸的纳米杆晶体前驱体。XRD分析表明,合成后的晶体前驱体由非晶相组成。在300°下煅烧10小时后,纳米杆晶体前驱体结晶成具有立方萤石结构的CeO_2纳米杆。采用了NANO MEASURER软件分析四个样品的平均直径分别为220,280,300和370 nm,这证实了随着醋酸锌量的增加,杆状变得越来越粗。采用三维有限元分析结果表明:随着提高CeO_2纳米杆的长度,硅单晶衬底的压应力降低,纳米杆直径的影响对硅衬底压应力的影响是不规则的。 Under different conditions of low temperature hydrothermal conditions,different sizes of nano-rod crystal precursors were prepared by hydrothermal treatment using different amounts of zinc acetate capping agent Zn(CH 3COO) 2.XRD analysis indicated that the synthesized crystal precursor consisted of an amorphous phase.After calcination at 300° for 10 hours,the nanorod crystal precursor crystallized into a CeO2 nanorod having a cubic fluorite structure.The NANO MEASURER software was used to analyze the average diameter of the four samples at 220,280,300 and 370 nm,respectively,which confirmed that as the amount of zinc acetate increased,the rod became thicker and thicker.The results of three-dimensional finite element analysis show that the compressive stress of the silicon single crystal substrate decreases with the increase of the length of the CeO2 nanorod.The influence of the diameter of the nanorod on the compressive stress of the silicon substrate is irregular.
作者 席智强 陈勇 Xi Zhiqiang;Chen Yong(School of Mechanical Engineering,University of South China,Hengyang 421001,China)
出处 《山东化工》 CAS 2019年第8期49-51,共3页 Shandong Chemical Industry
基金 湖南省重点学科建设项目的资金支持no [2014]85 南华大学研究生科学基金(编号:2018KYY068)~~
关键词 低温 氧化铈 有限元法 多晶体 low temperature CeO2 finite element method polycrystalline
  • 相关文献

参考文献2

二级参考文献58

  • 1Hu Z, Haneklaus S, Sparovek G, Schnug E. Rare earth elements in soils. Commun Soil Sci Plant Anal, 2006, 37: 1381-1420.
  • 2Bouzigues C, Gacoin T, Alexandrou A. Biological applications of rare-earth based nanoparticles. Acs Nano, 2011, 5: 8488-8505.
  • 3Conesa JC. Computer modeling of surfaces and defects on cerium dioxide. Surf Sci, 1995, 339: 337-352.
  • 4Stambouli AB, Traversa E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sust Energ Rev, 2002, 6: 433-455.
  • 5Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G. The utilization of ceria in industrial catalysis. Catal Today, 1999, 50: 353-367.
  • 6Suzuki T, Kosacki I, Anderson HU, Colomban P. Electrical conductivity and lattice defects in nanocrystalline cerium oxide thin films. J Am Ceram Soc, 2001, 84: 2007-2014.
  • 7Skorodumova NV, Simak SI, Lundqvist BI, Abrikosov IA, Johansson B. Quantum origin of the oxygen storage capability of ceria. Phys Rev Lett, 2002, 89: 166601.
  • 8Korsvik C, Patil S, Seal S, Self WT. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun, 2007: 1056-1058.
  • 9Celardo I, Pedersen JZ, Traversa E, Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale, 2011, 3: 1411-1420.
  • 10Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JES, Seal S, Self WT. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun, 2010, 46: 2736-2738.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部