期刊文献+

运用机器学习技术提高沙盒安全检测效率 被引量:1

下载PDF
导出
摘要 分析了沙盒文件检测系统的优缺点,提出了一种将机器学习技术和动态分析技术相结合,构建混合安全检测系统的思路。用高准确性的动态分析技术为机器学习模型提供样本自动标注,同时利用机器学习模型的自适应和高效率为沙盒提供前置过滤,在不牺牲系统准确度的前提下,将检测能力提高了5倍以上。
作者 刘波 曹亮
出处 《电脑编程技巧与维护》 2019年第5期116-118,共3页 Computer Programming Skills & Maintenance
  • 相关文献

参考文献3

二级参考文献66

  • 1Steve R W,Morton S,et al.Anatomy of a Commercial-Grade Immune System[R].IBM Research White Paper,1999.
  • 2William C.Learning trees and rules with setValued features[A].American Association for Artificial Intelligence(AAAI)[C].Menlo Park,CA:AAAI Press,1996.(1).709-716.
  • 3Matthew GS,Eleazer E,et al.Data mining methods for detection of new malicious executables[A].IEEE Symposium on Security and Privacy[C].Oakland,CA,May 2001:1207-1217.
  • 4Gerald T,Jeffrey O,et al.Neural networks for computer virus recognition[J].IEEE Expert,IEEE Computer Society,August,1966,11(4):5-6.
  • 5Vapnik V N.The Nature of Statistical Learning Theory[M].New York: Spring-Verlag,1995.
  • 6Mahmoud K, Youssef I, Andrew J. Phishing detection: A literature survey. IEEE Communications Surveys & Tutorials, 2013, 15(4): 2091-2121.
  • 7Paul K, Georgia K, Hector G M. Fighting spam on social Web sites a survey of approaches and future challenges. IEEE Internet Computing, 2007, 11(6): 36-45.
  • 8Priya M, Sandhya L, Ciza T. A static approach to detect drive-by-download attacks on Webpages//Proceedings of the International Conference on Control Communication and Computing. Xi'an, China, 2013:298-303.
  • 9Mavrommatis N P P, Monrose M A R F. All your iframes point to us//Proceedings of the 17th USENIX Security Symposium. San Jose, USA, 2008:1-22.
  • 10Ma J, Saul L K, Savage S, Voetker G M. Beyond blacklists: Learning to detect malicious Web sites from suspicious URLs//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2009: 1245-1253.

共引文献51

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部