摘要
根据自治动力系统中周期跟踪性和极限跟踪性的定义,将其引入到非自治动力系统。研究了非自治动力系统中周期跟踪性和极限跟踪性的动力学性质,得到:(1)若F={f_i}_(i=0)~∞拓扑共轭于G={g_i}_(i=0)~∞,则F具有周期跟踪性当且仅当G具有周期跟踪性;(2)若F={f_i}_(i=0)~∞拓扑共轭于G={g_i}_(i=0)~∞,则F具有极限跟踪性当且仅当G具有极限跟踪性;(3)若乘积系统(X×Y,F×G)具有周期跟踪性,则(X,F)和(Y,G)具有周期跟踪性。以上结论对非自治动力系统中跟踪性的发展有一定的促进作用。
According to the definition of the periodic shadowing property and the limit shadowing property in autonomous dynamical systems,this paper introduces the concept of periodic shadowing property and limit shadowing property in nonautonomous dynamical systems,and studies the dynamical properties of both shadowing properties and limit shadowing property innonautonomous dynamical systems.The following results are obtained:(1)IfF={fi}∞/i=0 and G={gi}∞/i=0 are topologically conjugate,then F has periodic shadowing property if and only if G has periodic shadowing property;(2) If F={ fi}∞i=0 and G={gi}∞/i=0 are topologically conjugate,then F has limit shadowing property if and only if G has limit shadowing property;(3) If the product system (X × Y,F × G) has periodic shadowing property,then (X,F) and (Y,G) have periodic shadowing property.The above results have the positive effect on the development of the shadowing property in autonomous dynamical systems.
作者
冀占江
杨甲山
JI Zhanjiang;YANG Jiashan(School of Data Science and Software Engineering,Wuzhou University,Wuzhou 543002,Guangxi Zhuang Autonomous Region,China;Guangxi Colleges and Universities Key Laboratory of Image Processing and Intelligent Information System,Wuzhou University,Wuzhou 543002,Guangxi Zhuang Autonomous Region,China)
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2019年第3期323-327,共5页
Journal of Zhejiang University(Science Edition)
基金
国家自然科学基金资助项目(51765060)
广西高校中青年教师科研基础能力提升项目(2019KY0681)
梧州学院校级科研项目(2017C001)
关键词
非自治动力系统
拓扑共轭
周期跟踪性
极限跟踪性
nonautonomous dynamical systems
topological conjugation
periodic shadowing property
limit shadowing property