期刊文献+

基于长短时记忆神经网络的带钢酸洗浓度预测

Prediction of Pickling Concentration Based on Long Short-memory Neural Network
下载PDF
导出
摘要 热轧带钢生产中一般通过酸洗来清除氧化铁皮。控制酸浓度在合理的范围内对于保证酸洗效果起着至关重要的作用,准确测量酸浓度才能更精准地对其进行控制。在机器学习、神经网络兴起的背景下,提出了基于长短时记忆(LSTM)神经网络的酸浓度预测方法。以某钢厂酸洗数据为对象,建立了LSTM酸浓度预测模型并对样本数据进行预测。试验结果表明,盐酸浓度、铁离子质量浓度的预测平均绝对误差分别为3.17 g/L,3.52 g/L,符合行业的误差规范要求;所提出的模型具备较高的预测精度,拥有较好的浓度预测性能,与传统统计模型相比,拥有更好的预测精度和更好的适用性。 In hot rolled strip production,iron oxide scale is usually removed by pickling. Controlling acid concentration in a reasonable range plays a vital role in ensuring the pickling effect. Accurate measurement of acid concentration can control it more accurately. Under the background of machine learning and the rise of neural network,an acid concentration prediction method based on long short-term memory(LSTM) is proposed. Based on the pickling data of a cold rolling mill in a steel mill,the LSTM acid concentration prediction model is established and the sample data is predicted. The results show that the average absolute errors of hydrochloric acid concentration and iron ion concentration are 3.17 g/L and 3.52 g/L respectively,which meet the requirements of industry error standards. The proposed model has higher prediction accuracy and better concentration prediction performance. Compared with the traditional statistical model,it has better prediction accuracy and better applicability.
作者 王宁 刘毅敏 WANG Ning;LIU Yi-min(Academy of Information Science and Engineering,Wuhan University of Science and Technology,Wuhan 430081,China)
出处 《自动化与仪表》 2019年第5期10-14,共5页 Automation & Instrumentation
基金 国家自然科学基金青年基金项目(61701354)
关键词 浓度预测 带钢酸洗 深度学习 长短期记忆 神经网络 concentration prediction strip pickling deep learning long short-term memory(LSTM) neural networks modeling
  • 相关文献

参考文献3

二级参考文献14

共引文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部