期刊文献+

人工智能在建科标准系统中标准分类的应用

Application of Artificial Intelligence in Standard Classification of Architecture Scientific Standard Management System
下载PDF
导出
摘要 为了提高建科标准系统标准分类的效率和准确性,本文分别采用朴素贝叶斯分类方法和多种深度神经网络分类方法,对30多万个中文标准进行分类训练和分类测试,结果显示采用深度神经网络Kmaxcnn模型分类准确率最高达到81.2%,实验结果表明,利用该模型可以对建科标准进行高质量的分类,节约了人力成本,大幅提高了效率。 In order to improve the efficiency and accuracy of standard classification in architecture scientific standard system,this paper respectively adopts Naive Bayesian classification and various Deep Neural Networks classification to carry out classification training and classification tests on more than 300,000 Chinese standards. The results show that the classification accuracy of Kmaxcnn model is as high as 81.2% by Deep Neural Network. The experimental results show that this model can beneficial to the high-quality classification of architecture scientific standard,it is not only saving the labor cost,but also greatly improving the efficiency.
作者 王沣 林玲 陈娟婷 WANG Feng
出处 《福建建设科技》 2019年第3期77-79,共3页 Fujian Construction Science & Technology
关键词 文本分类 神经网络 标准系统 人工智能 text categorization Neural networks Standard Management System Artificial intelligence
  • 相关文献

参考文献4

二级参考文献39

共引文献192

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部