期刊文献+

线性互补问题解存在的一个正则性条件 被引量:1

A Regularity Condition for Existence of Solution of Linear Complementarity Problem
下载PDF
导出
摘要 用同伦方法讨论线性互补问题解存在的条件.首先,给出与线性互补问题等价的绝对值方程,然后对绝对值方程构造同伦方程,并借助于该同伦方程给出绝对值方程解存在的一个正则性条件,该正则性条件可转化为线性互补问题解存在的条件. The homotopy method was used to discuss the existence conditions of a solution of linear complementarity problems. First, the absolute value equations equivalent to linear complementarity problem was given. Then, the homotopy equation was constructed for the absolute value equation, and a regularity condition for the existence of solutions of absolute value equations was given by means of this homotopy equation, which can be transformed into a condition for the existence of solutions of linear complementarity problems.
作者 姜兴武 姜舶洋 王秀玉 JIANG Xingwu;JIANG Boyang;WANG Xiuyu(Department of Foundation,Jilin Business and Technology College,Changchun 130507,China;Department of Information,Beijing University of Technology,Beijing 100022,China;School of Mathematics and Statistics,Changchun University of Technology,Changchun 130012,China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2019年第3期535-538,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11571050) 吉林省自然科学基金(批准号:20160101246JC)
关键词 绝对值方程 同伦方法 线性互补问题 absolute value equation homotopy method linear complementarity problem
  • 相关文献

参考文献3

二级参考文献26

  • 1Jundi Ding Hongyou Yin.A New Homotopy Method for Nonlinear Complementarity Problems[J].Numerical Mathematics A Journal of Chinese Universities(English Series),2007,16(2):155-163. 被引量:6
  • 2Kojima M, Megiddo N, Mizuno M. A General Framework of Continuation Methods for Complementarity Problems [J]. Math Oper Res, 1993, 18(4) : 945-963.
  • 3YU Qian, HUANG Chong-chao, WANG Xian-jia. A Combined Homotopy Interior Point Method for the Linear Complementarity Problem [J]. Applied Mathematics and Computation, 2006, 179(2): 696-701.
  • 4XU Qing, DANG Chuang-yin. A New Homotopy Method for Solving Non-linear Complementarity Problems [J]. Optimization, 2008, 57(5) : 681-689.
  • 5ZHAO Yun-bin, LI Gong-nong. Properties of a Homotopy Solution Path for Complementarity Problems with Quasi-monotone Mappings [J]. Applied Mathematics and Computation, 2004, 148(1) : 93-104.
  • 6LI Gong-nong. Analysis for a Homotopy Path of Complementarity Problems Based on/z-Exceptional Family [J]. Applied Mathematics and Computation, 2005, 169(1): 657-670.
  • 7DING Jun-di, YIN Hong-yan. A New Homotopy Method for Nonlinear Comolementarity Problems [J]. Numericla Mathematics A Journal of Chinese Universities: English Series, 2007, 16(2): 155-163.
  • 8WANG Xiu-yu, JIANG Xing wu, LIU Qing-huai. New Homotopy Method for Solving Nonlinear Complementarity Problems [J]. Journal of Jilin University: Science Edition, 2012, 50(3): 494-498.
  • 9Kouichi Taji,Motohiro Miyamoto.A Globally Convergent Smoothing Newton Method for Nonsmooth Equations and Its Application to Complementarity Problems[J].Computational Optimization and Applications.2002(1)
  • 10A. Fischer.New Constrained Optimization Reformulation of Complementarity Problems[J].Journal of Optimization Theory and Applications.1998(1)

共引文献10

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部