期刊文献+

一类鲁棒凸优化的Mond-Weir型逼近对偶性

Mond-Weir Type Approximate Duality for a Class of Robust Convex Optimization
下载PDF
导出
摘要 通过引入一类含有不确定信息的凸约束优化问题,先借助鲁棒优化方法,建立该不确定凸约束优化问题的Mond-Weir型鲁棒逼近对偶问题,再借助一类广义鲁棒逼近KKT条件,刻画该不确定凸约束优化问题与其Mond-Weir型鲁棒逼近对偶问题之间的逼近对偶性关系. By introducing a class of convex constrained optimization problems with uncertain data, we first established a Mond-Weir type robust approximate dual problem for the uncertain convex constrained optimization problem by means of robust optimization method. Then, by means of a class of generalized robust-type approximate KKT conditions, we characterized approximate duality relationship between the uncertain convex constrained optimization problem and its Mond\|Weir type robust approximate dual problem.
作者 赵丹 孙祥凯 ZHAO Dan;SUN Xiangkai(Institute of Applied Mathematics,Zhengzhou Shengda University ofEconomics,Business & Management,Zhengzhou 451191,China;College of Mathematics and Statistics,Chongqing Technology and Business University,Chongqing 400067,China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2019年第3期539-543,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11701057) 河南省教育厅人文社科项目(批准号:2019-ZZJH-202) 重庆市基础科学与前沿技术重点项目(批准号:cstc2017jcyjBX0032)
关键词 不确定优化问题 逼近对偶性 鲁棒KKT条件 uncertain optimization problem approximate duality robust KKT condition
  • 相关文献

参考文献3

二级参考文献33

  • 1BurkeJ V. Ferris M C. A Gauss-Newton Method for Convex Composite Optimization[J]. Mathematical Programming. 1995. 71(2): 179-194.
  • 2Combari C. Laghdir M. Thibault L. A Note on Subdifferentials of Convex Composite Functionals[J]. Archiv der Mathematik. 1996. 67(;3): 239-252.
  • 3Zalinescu C. Convex Analysis in General Vector Spaces[M]. Singapore: World Scientific. 2002.
  • 4ZHENG Xi-yin. Ng K F. Strong KKT Conditions and Weak Sharp Solutions in Convex Composite Optimization[J]. Mathematical Programming, 2011. 126(2): 259-279.
  • 5Bot R I, Grad S M. Wanka G. A New Constraint Qualification for the Formula of the Subdifferential of Composed Convex Functions in Infinite Dimensional Spaces[J]. Mathematische Nachrichten , 200S. 2S1(S): 10SS-1107.
  • 6Bot R I, Grad S M. Wanka G. Generalized Moreau-Rockafellar Results for Composed Convex Functions[J]. Optimization, 2009. 5S(7): 917-933.
  • 7Bot R 1. Conjugate Duality in Convex Optimization[M]. Berlin: Springer-Verlag, 2010.
  • 8LI Chong. FANG Dong-hui , Lopez G, et al. Stable and Total Fenchel Duality for Convex Optimization Problems in Locally Convex Spaces[J]. SIAMJournal on Optimization, 2009. 20(2): 1032-1051.
  • 9Fang D H. Li C. Ng KF. Constraint Qualifications for Optimality Conditions and Total Lagrange Dualities in Convex Infinite Programming[J]. Nonlinear Analysis: Theory. Methods &. Applications, 2010, 73(5) :.1143-1159.
  • 10Jeyakumar V, Dinh N, Lee G M. A New Closed Cone Constraint Qualification for Convex Optimization[R]. Sydney: University of New South Wales, 2004.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部