摘要
通过引入一类含有不确定信息的凸约束优化问题,先借助鲁棒优化方法,建立该不确定凸约束优化问题的Mond-Weir型鲁棒逼近对偶问题,再借助一类广义鲁棒逼近KKT条件,刻画该不确定凸约束优化问题与其Mond-Weir型鲁棒逼近对偶问题之间的逼近对偶性关系.
By introducing a class of convex constrained optimization problems with uncertain data, we first established a Mond-Weir type robust approximate dual problem for the uncertain convex constrained optimization problem by means of robust optimization method. Then, by means of a class of generalized robust-type approximate KKT conditions, we characterized approximate duality relationship between the uncertain convex constrained optimization problem and its Mond\|Weir type robust approximate dual problem.
作者
赵丹
孙祥凯
ZHAO Dan;SUN Xiangkai(Institute of Applied Mathematics,Zhengzhou Shengda University ofEconomics,Business & Management,Zhengzhou 451191,China;College of Mathematics and Statistics,Chongqing Technology and Business University,Chongqing 400067,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2019年第3期539-543,共5页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11701057)
河南省教育厅人文社科项目(批准号:2019-ZZJH-202)
重庆市基础科学与前沿技术重点项目(批准号:cstc2017jcyjBX0032)
关键词
不确定优化问题
逼近对偶性
鲁棒KKT条件
uncertain optimization problem
approximate duality
robust KKT condition