摘要
主要讨论平面上一类超定方程解存在的必要性问题。研究了函数的拉普拉斯算子不等于-1,而是等于一般的函数,在边界上同时满足Dirichlet条件和Neumann条件,证明在某些条件下这类超定方程有解的必要条件是它的区域是平面上的圆。
The existence of a class of overdetermined equations in the plane were discussed in this thesis.The Laplace of a function was not equal to -1, but was equal to the general function.It also satisfied the Dirichlet condition and Neumann condition on the boundary.It was proved that under some condtions the necessary condition of the existence of the solution for this overdetermined equation is that its region is a round in the plane.
作者
黄琴
田竺艳
阮其华
HUANG Qin;TIAN Zhuyan;RUAN Qihua(School of Mathematics and Finance,Putian University,Putian Fujian 351100,China)
出处
《莆田学院学报》
2019年第2期1-3,15,共4页
Journal of putian University
基金
福建省自然科学基金资助项目(2016J01675
2017J01563)
关键词
超定问题
积分恒等式
极大模原理
overdetermination problem
integral identity
maximum principle