期刊文献+

基于模糊数学理论的零售商会员消费特征分析

Analysis on Retailer Members' Consumption Characteristics Based on Fuzzy Mathematics Theory
下载PDF
导出
摘要 本文利用大型百货商场会员消费数据,使用了SQL软件的数据分析功能、K均值聚类算法、模糊C均值算法、模糊综合评价、相关分析等方法,分析该商场会员的消费特征,用T检验法比较了会员与非会员群体之间的差异,建立了会员购买力、生命周期和状态划分的分析方法,计算非活跃会员的激活率. This paper uses the data analysis function of SQL software, K-means clustering algorithm, fuzzy C-means algorithm, fuzzy comprehensive evaluation, correlation analysis and other methods to analyze the consumption characteristics of the members of large department stores,compares the differences between members and non-members groups by T-test, and establishes the division of members' purchasing power, life cycle and status. The activation rate of inactive members was calculated by analysis method.
作者 王军 杨仁付 WANG Jun;YANG Ren-fu(Anhui Finance&Trade Vocational College,Hefei 230601,China)
出处 《白城师范学院学报》 2019年第4期9-14,共6页 Journal of Baicheng Normal University
基金 安徽高校自然科学研究项目(KJ2016A011) 安徽财贸职业学院科学研究项目(2017nhzrb02) 安徽财贸职业学院科学研究项目(2017nhzrc03)
关键词 K均值聚类算法 模糊C均值算法 模糊综合评价 T检验法 K means clustering algorithm fuzzy C-means algorithm fuzzy comprehensive evaluation T test method
  • 相关文献

参考文献2

二级参考文献23

  • 1周涓,熊忠阳,张玉芳,任芳.基于最大最小距离法的多中心聚类算法[J].计算机应用,2006,26(6):1425-1427. 被引量:72
  • 2Celebi M E,Kingravi H A,Vela P A.A comparative study of efficient initialization methods for the K-means clustering algorithm[J].Expert Systems with Applications,2013,40(1):200-210.
  • 3Spielman D A,Teng S H.A local clustering algorithm for massive graphs and its application to nearly linear time graph partitioning[J].SIAM Journal on Computing,2013,42(1):1-26.
  • 4Papakostas D,Katsaros D.A simulation-based performance evaluation of a randomized MIS-based clustering algorithm for Ad hoc networks[J].Simulation Modelling Practice and Theory,2014,48(1):1-23.
  • 5Chen T W,Ikeda M.Design and implementation of low-power hardware architecture with single-cycle divider for on-line clustering algorithm[J].IEEE Trans on Circuits and Systems I:Regular Papers,2013,60(8):2165-2176.
  • 6Rao P V,Rao S K M.Performance issues on K-means partitioning clustering algorithm[J].International Journal of Computer,2014,14(1):41-51.
  • 7Zhang Renlong,Shan Miyuan,Liu Xiaohong,et al.A novel fuzzy hybrid quantum artificial immune clustering algorithm based on cloud model[J].Engineering Applications of Artificial Intelligence,2014,35(2):1-13.
  • 8Prabha K A,Visalakshi N K.Improved particle swarm optimization based K-means clustering[C] //Proc of the International Conference on Intelligent Computing Applications.[S.l.] :IEEE Computer Society,2014:59-63.
  • 9Gou Shuping,Zhuang Xiong,Li Yangyang,et al.Multi-elitist immune clonal quantum clustering algorithm[J].Neurocomputing,2013,101(3):275-289.
  • 10Rana S,Jasola S,Kumar R.A boundary restricted adaptive particle swarm optimization for data clustering[J].International Journal of Machine Learning and Cybernetics,2013,4(4):391-400.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部