期刊文献+

基于心冲击信号的自动睡眠分期算法研究进展 被引量:2

Research Progress of Automatic Sleep Staging Algorithms Based on Ballistocardiogram
下载PDF
导出
摘要 睡眠分期是指对睡眠阶段进行分类,其是睡眠研究与睡眠相关疾病诊断的主要手段之一,具有重要的临床研究与应用价值。近年来,基于心冲击信号的自动睡眠分期算法受到研究人员的重点关注。在介绍睡眠分期和心冲击信号基本知识的基础上,详细介绍了近年来基于心冲击信号的自动睡眠分期算法,并分析该领域研究进展与未来发展趋势。 Sleep staging is the classification of sleep stages,which is essential for the diagnosis of sleep-related disorders and sleep research,and has important significance for clinical research and application.In recent years,automatic sleep staging algorithms based on ballistocardiogram(BCG)have attracted many researchers’attention.On the basis of introducing the basic knowledge of sleep staging and ballistocardiogram,the present paper introduces the automatic sleep staging algorithms based on ballistocardiogram in recent years.In the end,the research progress of this field is analyzed,and development trends of next phase are pointed out.
作者 段鹏慧 严加勇 段世梅 杨树臣 DUAN Peng-hui;YAN Jia-yong;DUAN Shi-mei;YANG Shu-chen(School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;School of Medical Instrument,Shanghai University of Medical&Health Science,Shanghai 201318,China;Center for Certification&Evaluation,SHFDA,200021,China;Shanghai Yueyang medical technology Co.,LTD.,Shanghai 201203,China)
出处 《软件导刊》 2019年第5期5-8,12,共5页 Software Guide
基金 国家重点研发计划项目(2016YFC0801800)
关键词 睡眠分期 心冲击信号 自动睡眠分期算法 sleep staging ballistocardiogram automatic sleep staging algorithms
  • 相关文献

参考文献2

二级参考文献15

  • 1CAFFAREL J, GIBSON G J, HARRISON J P, et al. Com- parison of manual sleep staging with automated neural net- work-based analysis in clinical practice [J]. Med Biol Eng Comput, 2006, 44(1-2): 105-110.
  • 2BURNSJW, CROFFORDLJ, CHERVINRD. Sleep stage dynamics in fibromyalgia patients and controls [J]. Sleep Med, 2008, 9(6): 689-696.
  • 3KISHI A, NATEI.SON B H, TOGO F, et al. Sleep-stage dynamics in patients with chronic fatigue syndrome with or without fibromyalgia[J]. Sleep, 2011, 34(11): 1551-1560.
  • 4LIANG S F, CHEN Y H, KUO C E, et al. A fuzzy inference system for sleep staging [C]// 2011 IEEE International Con- ference on Fuzzy Systems, Taipei, 2011:2104-2107.
  • 5ONG J S, TOUYZ G, TANNER S, et al. Variability of hu- man upper airway collapsibility during sleep and the influence of body posture and sleep stage [J]. J Sleep Res, 2011, 20(4):533-537.
  • 6GOTTESMANN C. Discovery of the dreaming sleep stage: a recollection [J]. Sleep, 2009, 32(1): 15-16.
  • 7KIRSCH M R, MONAHAN K, WENG J, et al. Entropy- based measures for quantifying sleep-stage transition dynam- ics:relationship to sleep fragmentation and daytime sleepiness [J]. IEEE Trans Biomed Eng, 2012, 59(3): 787-796.
  • 8KISHI A, YASUDA H, stage transitions in healthy MATSUMOTO T, et al. Sleep humans altered by central mono- Methods Inf Med, 2010, 49(5):.
  • 9OROPESA E, CYCON H L, JOBERT M. Sleep stage classi fication using wavelet transform and neural network, TR 99 008 [J]. Berkeley : International Computer Science Institute 1999.
  • 10BSOUL M, MINN H, NOURANI M, et al. Real-time sleep quality assessment using single-lead ECG and multi-stage SVM classifier [C]// 32nd Annual International Conference of the IEEE EMBS, Buenos Aires, Argentina: 2010:1178-1181.

共引文献30

同被引文献7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部