期刊文献+

基于社交平台大数据的暴雨时空分析 被引量:3

下载PDF
导出
摘要 在来自社交平台大数据的支持下,已有多项研究揭示灾害发展趋势、灾难位置与影响范围,展现了社交媒体数据对灾害研究的帮助。本文以2012年北京大暴雨为研究对象,通过分析用户提及行为与暴雨时空变化,通过微博中暴雨数据反映了用户在现实中的亲近社交关系、实时展现暴雨相关信息并预测其发展趋势,有助于研究灾害动向以及其间用户关系。 In this paper, the 2012 Beijing heavy rain was taken as the research object. By analyzing the users' mentioned behaviors and the temporal and spatial changes of the heavy rain, the heavy rain data in the microblog reflected the users' close social relationship in reality, presented the information related to the heavy rain in real time and predicted its development trend, which was conducive to the study of the disaster trend and the relationship between users.
作者 李雪尘 熊薪
出处 《科技创新导报》 2019年第5期119-121,共3页 Science and Technology Innovation Herald
关键词 时空大数据 提及行为 暴雨 新浪微博 Spatiotemporal big data Mention behavior Heavy rains Weibo
  • 相关文献

参考文献1

二级参考文献15

  • 1朱丽莉,王金华.手机定位服务系统的研究[J].华东理工大学学报(自然科学版),2007,33(B06):21-23. 被引量:5
  • 2Ashbrook D, Starner T. Using GPS to Learn Sig nificant Locations and Predict Movement Across Multiple Users[J]. Personal and Ubiquitous Com- puting,2003, 7(5): 275-286.
  • 3Song C, Qu Z, Blumm N, et al. Limits of Predicta- bility in Human Mobility[J]. Science, 2010, 327 (5 968): 1 018-1 021.
  • 4Song C, Koren T, Wang P, et al. Modelling the Scaling Properties of Human Mobility[J]. Nature Physics,2010, 6(10): 818-823.
  • 5Ahas R, Silm S, Jorv O, et al. Using Mobile Posi tioning Data to Model Locations Meaningful to Us- ers of Mobile Phones[J]. Journal of Urban Tech- nology,2010, 17(1): 3-27.
  • 6Lian Defu, Xie Xing. Learning Location Naming from User Check-In Histories[C]. The 19th ACM SIGSPATIAI. International Conference on Advances in Geographic Information Systems, ACM GIS 2011 ,Chicago,USA,2011.
  • 7Arase Y, Xie Xing, Hara T,et al. Mining People's Trips from Large Scale Geo tagged Photos[C]. The 18th ACM International Conference on Multimedia 2010, Firenze, Italy, 2010.
  • 8Wakamiya S, Lee R, Sumiya K. Crowd-based Ur- ban Characterization: Extracting Crowd Behavioral Patterns in Urban Areas from Twitter[C]. The 3rd ACM SIGSPATIAL International Workshop on I.o- cation-based Social Networks, Chicago, Illinois, USA, 2011.
  • 9Trevisani E, Vitaletti A. Cell-ID Location Tech nique, Limits and Benefits: An Experimental Study[C]. The 6th IEEE Workshop on Mobile Compu ting Systems and Applications, Windermere, Cure bria, UK, 2004.
  • 10Ester M, Kriegel H P, Sander J, et al. A Density- Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]. The 2nd Interna- tional Conference on Knowledge Discovery and Data Mining, Portland, Oregon, 1996.

共引文献23

同被引文献63

引证文献3

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部